forked from OSchip/llvm-project
[mlir] Async: add a separate pass to lower from async to async.coro and async.runtime
Depends On D95000 Move async.execute outlining and async -> async.runtime lowering into the separate Async transformation pass Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D95311
This commit is contained in:
parent
7c164a9225
commit
25f80e16d1
|
@ -26,6 +26,8 @@ std::unique_ptr<OperationPass<FuncOp>> createAsyncRefCountingPass();
|
|||
|
||||
std::unique_ptr<OperationPass<FuncOp>> createAsyncRefCountingOptimizationPass();
|
||||
|
||||
std::unique_ptr<OperationPass<ModuleOp>> createAsyncToAsyncRuntimePass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Registration
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -38,4 +38,11 @@ def AsyncRefCountingOptimization :
|
|||
let dependentDialects = ["async::AsyncDialect"];
|
||||
}
|
||||
|
||||
def AsyncToAsyncRuntime : Pass<"async-to-async-runtime", "ModuleOp"> {
|
||||
let summary = "Lower high level async operations (e.g. async.execute) to the"
|
||||
"explicit async.rutime and async.coro operations";
|
||||
let constructor = "mlir::createAsyncToAsyncRuntimePass()";
|
||||
let dependentDialects = ["async::AsyncDialect"];
|
||||
}
|
||||
|
||||
#endif // MLIR_DIALECT_ASYNC_PASSES
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
// RUN: -linalg-tile-to-parallel-loops="linalg-tile-sizes=256" \
|
||||
// RUN: -async-parallel-for="num-concurrent-async-execute=4" \
|
||||
// RUN: -async-ref-counting \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -lower-affine \
|
||||
// RUN: -convert-linalg-to-loops \
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
// RUN: mlir-opt %s -async-parallel-for \
|
||||
// RUN: -async-ref-counting \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -convert-scf-to-std \
|
||||
// RUN: -convert-std-to-llvm \
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
// RUN: mlir-opt %s -async-parallel-for \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -async-ref-counting \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -convert-scf-to-std \
|
||||
|
|
|
@ -14,14 +14,10 @@
|
|||
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
||||
#include "mlir/IR/TypeUtilities.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
#include "mlir/Transforms/RegionUtils.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/Support/FormatVariadic.h"
|
||||
|
||||
#define DEBUG_TYPE "convert-async-to-llvm"
|
||||
|
||||
|
@ -257,232 +253,6 @@ static void addResumeFunction(ModuleOp module) {
|
|||
blockBuilder.create<LLVM::ReturnOp>(ValueRange());
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// async.execute op outlining to the coroutine functions.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Function targeted for coroutine transformation has two additional blocks at
|
||||
/// the end: coroutine cleanup and coroutine suspension.
|
||||
///
|
||||
/// async.await op lowering additionaly creates a resume block for each
|
||||
/// operation to enable non-blocking waiting via coroutine suspension.
|
||||
namespace {
|
||||
struct CoroMachinery {
|
||||
// Async execute region returns a completion token, and an async value for
|
||||
// each yielded value.
|
||||
//
|
||||
// %token, %result = async.execute -> !async.value<T> {
|
||||
// %0 = constant ... : T
|
||||
// async.yield %0 : T
|
||||
// }
|
||||
Value asyncToken; // token representing completion of the async region
|
||||
llvm::SmallVector<Value, 4> returnValues; // returned async values
|
||||
|
||||
Value coroHandle; // coroutine handle (!async.coro.handle value)
|
||||
Block *cleanup; // coroutine cleanup block
|
||||
Block *suspend; // coroutine suspension block
|
||||
};
|
||||
} // namespace
|
||||
|
||||
/// Builds an coroutine template compatible with LLVM coroutines switched-resume
|
||||
/// lowering using `async.runtime.*` and `async.coro.*` operations.
|
||||
///
|
||||
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
|
||||
///
|
||||
/// - `entry` block sets up the coroutine.
|
||||
/// - `cleanup` block cleans up the coroutine state.
|
||||
/// - `suspend block after the @llvm.coro.end() defines what value will be
|
||||
/// returned to the initial caller of a coroutine. Everything before the
|
||||
/// @llvm.coro.end() will be executed at every suspension point.
|
||||
///
|
||||
/// Coroutine structure (only the important bits):
|
||||
///
|
||||
/// func @async_execute_fn(<function-arguments>)
|
||||
/// -> (!async.token, !async.value<T>)
|
||||
/// {
|
||||
/// ^entry(<function-arguments>):
|
||||
/// %token = <async token> : !async.token // create async runtime token
|
||||
/// %value = <async value> : !async.value<T> // create async value
|
||||
/// %id = async.coro.id // create a coroutine id
|
||||
/// %hdl = async.coro.begin %id // create a coroutine handle
|
||||
/// br ^cleanup
|
||||
///
|
||||
/// ^cleanup:
|
||||
/// async.coro.free %hdl // delete the coroutine state
|
||||
/// br ^suspend
|
||||
///
|
||||
/// ^suspend:
|
||||
/// async.coro.end %hdl // marks the end of a coroutine
|
||||
/// return %token, %value : !async.token, !async.value<T>
|
||||
/// }
|
||||
///
|
||||
/// The actual code for the async.execute operation body region will be inserted
|
||||
/// before the entry block terminator.
|
||||
///
|
||||
///
|
||||
static CoroMachinery setupCoroMachinery(FuncOp func) {
|
||||
assert(func.getBody().empty() && "Function must have empty body");
|
||||
|
||||
MLIRContext *ctx = func.getContext();
|
||||
Block *entryBlock = func.addEntryBlock();
|
||||
|
||||
auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Allocate async token/values that we will return from a ramp function.
|
||||
// ------------------------------------------------------------------------ //
|
||||
auto retToken = builder.create<RuntimeCreateOp>(TokenType::get(ctx)).result();
|
||||
|
||||
llvm::SmallVector<Value, 4> retValues;
|
||||
for (auto resType : func.getCallableResults().drop_front())
|
||||
retValues.emplace_back(builder.create<RuntimeCreateOp>(resType).result());
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Initialize coroutine: get coroutine id and coroutine handle.
|
||||
// ------------------------------------------------------------------------ //
|
||||
auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
|
||||
auto coroHdlOp =
|
||||
builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.id());
|
||||
|
||||
Block *cleanupBlock = func.addBlock();
|
||||
Block *suspendBlock = func.addBlock();
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Coroutine cleanup block: deallocate coroutine frame, free the memory.
|
||||
// ------------------------------------------------------------------------ //
|
||||
builder.setInsertionPointToStart(cleanupBlock);
|
||||
builder.create<CoroFreeOp>(coroIdOp.id(), coroHdlOp.handle());
|
||||
|
||||
// Branch into the suspend block.
|
||||
builder.create<BranchOp>(suspendBlock);
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Coroutine suspend block: mark the end of a coroutine and return allocated
|
||||
// async token.
|
||||
// ------------------------------------------------------------------------ //
|
||||
builder.setInsertionPointToStart(suspendBlock);
|
||||
|
||||
// Mark the end of a coroutine: async.coro.end
|
||||
builder.create<CoroEndOp>(coroHdlOp.handle());
|
||||
|
||||
// Return created `async.token` and `async.values` from the suspend block.
|
||||
// This will be the return value of a coroutine ramp function.
|
||||
SmallVector<Value, 4> ret{retToken};
|
||||
ret.insert(ret.end(), retValues.begin(), retValues.end());
|
||||
builder.create<ReturnOp>(ret);
|
||||
|
||||
// Branch from the entry block to the cleanup block to create a valid CFG.
|
||||
builder.setInsertionPointToEnd(entryBlock);
|
||||
builder.create<BranchOp>(cleanupBlock);
|
||||
|
||||
// `async.await` op lowering will create resume blocks for async
|
||||
// continuations, and will conditionally branch to cleanup or suspend blocks.
|
||||
|
||||
CoroMachinery machinery;
|
||||
machinery.asyncToken = retToken;
|
||||
machinery.returnValues = retValues;
|
||||
machinery.coroHandle = coroHdlOp.handle();
|
||||
machinery.cleanup = cleanupBlock;
|
||||
machinery.suspend = suspendBlock;
|
||||
return machinery;
|
||||
}
|
||||
|
||||
/// Outline the body region attached to the `async.execute` op into a standalone
|
||||
/// function.
|
||||
///
|
||||
/// Note that this is not reversible transformation.
|
||||
static std::pair<FuncOp, CoroMachinery>
|
||||
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
|
||||
ModuleOp module = execute->getParentOfType<ModuleOp>();
|
||||
|
||||
MLIRContext *ctx = module.getContext();
|
||||
Location loc = execute.getLoc();
|
||||
|
||||
// Collect all outlined function inputs.
|
||||
llvm::SetVector<mlir::Value> functionInputs(execute.dependencies().begin(),
|
||||
execute.dependencies().end());
|
||||
functionInputs.insert(execute.operands().begin(), execute.operands().end());
|
||||
getUsedValuesDefinedAbove(execute.body(), functionInputs);
|
||||
|
||||
// Collect types for the outlined function inputs and outputs.
|
||||
auto typesRange = llvm::map_range(
|
||||
functionInputs, [](Value value) { return value.getType(); });
|
||||
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
|
||||
auto outputTypes = execute.getResultTypes();
|
||||
|
||||
auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
|
||||
auto funcAttrs = ArrayRef<NamedAttribute>();
|
||||
|
||||
// TODO: Derive outlined function name from the parent FuncOp (support
|
||||
// multiple nested async.execute operations).
|
||||
FuncOp func = FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
|
||||
symbolTable.insert(func, Block::iterator(module.getBody()->getTerminator()));
|
||||
|
||||
SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
|
||||
|
||||
// Prepare a function for coroutine lowering by adding entry/cleanup/suspend
|
||||
// blocks, adding async.coro operations and setting up control flow.
|
||||
CoroMachinery coro = setupCoroMachinery(func);
|
||||
|
||||
// Suspend async function at the end of an entry block, and resume it using
|
||||
// Async resume operation (execution will be resumed in a thread managed by
|
||||
// the async runtime).
|
||||
Block *entryBlock = &func.getBlocks().front();
|
||||
auto builder = ImplicitLocOpBuilder::atBlockTerminator(loc, entryBlock);
|
||||
|
||||
// Save the coroutine state: async.coro.save
|
||||
auto coroSaveOp =
|
||||
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
||||
|
||||
// Pass coroutine to the runtime to be resumed on a runtime managed thread.
|
||||
builder.create<RuntimeResumeOp>(coro.coroHandle);
|
||||
|
||||
// Split the entry block before the terminator (branch to suspend block).
|
||||
auto *terminatorOp = entryBlock->getTerminator();
|
||||
Block *suspended = terminatorOp->getBlock();
|
||||
Block *resume = suspended->splitBlock(terminatorOp);
|
||||
|
||||
// Add async.coro.suspend as a suspended block terminator.
|
||||
builder.setInsertionPointToEnd(suspended);
|
||||
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
|
||||
coro.cleanup);
|
||||
|
||||
size_t numDependencies = execute.dependencies().size();
|
||||
size_t numOperands = execute.operands().size();
|
||||
|
||||
// Await on all dependencies before starting to execute the body region.
|
||||
builder.setInsertionPointToStart(resume);
|
||||
for (size_t i = 0; i < numDependencies; ++i)
|
||||
builder.create<AwaitOp>(func.getArgument(i));
|
||||
|
||||
// Await on all async value operands and unwrap the payload.
|
||||
SmallVector<Value, 4> unwrappedOperands(numOperands);
|
||||
for (size_t i = 0; i < numOperands; ++i) {
|
||||
Value operand = func.getArgument(numDependencies + i);
|
||||
unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).result();
|
||||
}
|
||||
|
||||
// Map from function inputs defined above the execute op to the function
|
||||
// arguments.
|
||||
BlockAndValueMapping valueMapping;
|
||||
valueMapping.map(functionInputs, func.getArguments());
|
||||
valueMapping.map(execute.body().getArguments(), unwrappedOperands);
|
||||
|
||||
// Clone all operations from the execute operation body into the outlined
|
||||
// function body.
|
||||
for (Operation &op : execute.body().getOps())
|
||||
builder.clone(op, valueMapping);
|
||||
|
||||
// Replace the original `async.execute` with a call to outlined function.
|
||||
ImplicitLocOpBuilder callBuilder(loc, execute);
|
||||
auto callOutlinedFunc = callBuilder.create<CallOp>(
|
||||
func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
|
||||
execute.replaceAllUsesWith(callOutlinedFunc.getResults());
|
||||
execute.erase();
|
||||
|
||||
return {func, coro};
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert Async dialect types to LLVM types.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -933,6 +703,10 @@ public:
|
|||
// Cast from i8* to the LLVM pointer type.
|
||||
auto valueType = op.value().getType();
|
||||
auto llvmValueType = getTypeConverter()->convertType(valueType);
|
||||
if (!llvmValueType)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "failed to convert stored value type to LLVM type");
|
||||
|
||||
auto castedStoragePtr = rewriter.create<LLVM::BitcastOp>(
|
||||
loc, LLVM::LLVMPointerType::get(llvmValueType),
|
||||
storagePtr.getResult(0));
|
||||
|
@ -972,6 +746,10 @@ public:
|
|||
// Cast from i8* to the LLVM pointer type.
|
||||
auto valueType = op.result().getType();
|
||||
auto llvmValueType = getTypeConverter()->convertType(valueType);
|
||||
if (!llvmValueType)
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "failed to convert loaded value type to LLVM type");
|
||||
|
||||
auto castedStoragePtr = rewriter.create<LLVM::BitcastOp>(
|
||||
loc, LLVM::LLVMPointerType::get(llvmValueType),
|
||||
storagePtr.getResult(0));
|
||||
|
@ -1074,205 +852,6 @@ public:
|
|||
};
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.create_group operation to async.runtime.create
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(CreateGroupOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<RuntimeCreateOp>(
|
||||
op, GroupType::get(op->getContext()));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.add_to_group operation to async.runtime.add_to_group.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(AddToGroupOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
|
||||
op, rewriter.getIndexType(), operands);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.await and async.await_all operations to the async.runtime.await
|
||||
// or async.runtime.await_and_resume operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
template <typename AwaitType, typename AwaitableType>
|
||||
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
|
||||
using AwaitAdaptor = typename AwaitType::Adaptor;
|
||||
|
||||
public:
|
||||
AwaitOpLoweringBase(
|
||||
MLIRContext *ctx,
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
||||
: OpConversionPattern<AwaitType>(ctx),
|
||||
outlinedFunctions(outlinedFunctions) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(AwaitType op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// We can only await on one the `AwaitableType` (for `await` it can be
|
||||
// a `token` or a `value`, for `await_all` it must be a `group`).
|
||||
if (!op.operand().getType().template isa<AwaitableType>())
|
||||
return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
|
||||
|
||||
// Check if await operation is inside the outlined coroutine function.
|
||||
auto func = op->template getParentOfType<FuncOp>();
|
||||
auto outlined = outlinedFunctions.find(func);
|
||||
const bool isInCoroutine = outlined != outlinedFunctions.end();
|
||||
|
||||
Location loc = op->getLoc();
|
||||
Value operand = AwaitAdaptor(operands).operand();
|
||||
|
||||
// Inside regular functions we use the blocking wait operation to wait for
|
||||
// the async object (token, value or group) to become available.
|
||||
if (!isInCoroutine)
|
||||
rewriter.create<RuntimeAwaitOp>(loc, operand);
|
||||
|
||||
// Inside the coroutine we convert await operation into coroutine suspension
|
||||
// point, and resume execution asynchronously.
|
||||
if (isInCoroutine) {
|
||||
const CoroMachinery &coro = outlined->getSecond();
|
||||
Block *suspended = op->getBlock();
|
||||
|
||||
ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
|
||||
MLIRContext *ctx = op->getContext();
|
||||
|
||||
// Save the coroutine state and resume on a runtime managed thread when
|
||||
// the operand becomes available.
|
||||
auto coroSaveOp =
|
||||
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
||||
builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
|
||||
|
||||
// Split the entry block before the await operation.
|
||||
Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
|
||||
|
||||
// Add async.coro.suspend as a suspended block terminator.
|
||||
builder.setInsertionPointToEnd(suspended);
|
||||
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
|
||||
coro.cleanup);
|
||||
|
||||
// Make sure that replacement value will be constructed in resume block.
|
||||
rewriter.setInsertionPointToStart(resume);
|
||||
}
|
||||
|
||||
// Erase or replace the await operation with the new value.
|
||||
if (Value replaceWith = getReplacementValue(op, operand, rewriter))
|
||||
rewriter.replaceOp(op, replaceWith);
|
||||
else
|
||||
rewriter.eraseOp(op);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
virtual Value getReplacementValue(AwaitType op, Value operand,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
return Value();
|
||||
}
|
||||
|
||||
private:
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
||||
};
|
||||
|
||||
/// Lowering for `async.await` with a token operand.
|
||||
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
};
|
||||
|
||||
/// Lowering for `async.await` with a value operand.
|
||||
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
|
||||
Value
|
||||
getReplacementValue(AwaitOp op, Value operand,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// Load from the async value storage.
|
||||
auto valueType = operand.getType().cast<ValueType>().getValueType();
|
||||
return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
|
||||
}
|
||||
};
|
||||
|
||||
/// Lowering for `async.await_all` operation.
|
||||
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.yield operation to async.runtime operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
|
||||
public:
|
||||
YieldOpLowering(
|
||||
MLIRContext *ctx,
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
||||
: OpConversionPattern<async::YieldOp>(ctx),
|
||||
outlinedFunctions(outlinedFunctions) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(async::YieldOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// Check if yield operation is inside the outlined coroutine function.
|
||||
auto func = op->template getParentOfType<FuncOp>();
|
||||
auto outlined = outlinedFunctions.find(func);
|
||||
if (outlined == outlinedFunctions.end())
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "operation is not inside the outlined async.execute function");
|
||||
|
||||
Location loc = op->getLoc();
|
||||
const CoroMachinery &coro = outlined->getSecond();
|
||||
|
||||
// Store yielded values into the async values storage and switch async
|
||||
// values state to available.
|
||||
for (auto tuple : llvm::zip(operands, coro.returnValues)) {
|
||||
Value yieldValue = std::get<0>(tuple);
|
||||
Value asyncValue = std::get<1>(tuple);
|
||||
rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
|
||||
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
|
||||
}
|
||||
|
||||
// Switch the coroutine completion token to available state.
|
||||
rewriter.replaceOpWithNewOp<RuntimeSetAvailableOp>(op, coro.asyncToken);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
private:
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
|
@ -1284,89 +863,25 @@ struct ConvertAsyncToLLVMPass
|
|||
|
||||
void ConvertAsyncToLLVMPass::runOnOperation() {
|
||||
ModuleOp module = getOperation();
|
||||
SymbolTable symbolTable(module);
|
||||
|
||||
MLIRContext *ctx = &getContext();
|
||||
|
||||
// Outline all `async.execute` body regions into async functions (coroutines).
|
||||
llvm::DenseMap<FuncOp, CoroMachinery> outlinedFunctions;
|
||||
|
||||
// We use conversion to LLVM type to ensure that all `async.value` operands
|
||||
// and results can be lowered to LLVM load and store operations.
|
||||
LLVMTypeConverter llvmConverter(ctx);
|
||||
llvmConverter.addConversion(AsyncRuntimeTypeConverter::convertAsyncTypes);
|
||||
|
||||
// Returns true if the `async.value` payload is convertible to LLVM.
|
||||
auto isConvertibleToLlvm = [&](Type type) -> bool {
|
||||
auto valueType = type.cast<ValueType>().getValueType();
|
||||
return static_cast<bool>(llvmConverter.convertType(valueType));
|
||||
};
|
||||
|
||||
WalkResult outlineResult = module.walk([&](ExecuteOp execute) {
|
||||
// All operands and results must be convertible to LLVM.
|
||||
if (!llvm::all_of(execute.operands().getTypes(), isConvertibleToLlvm)) {
|
||||
execute.emitOpError("operands payload must be convertible to LLVM type");
|
||||
return WalkResult::interrupt();
|
||||
}
|
||||
if (!llvm::all_of(execute.results().getTypes(), isConvertibleToLlvm)) {
|
||||
execute.emitOpError("results payload must be convertible to LLVM type");
|
||||
return WalkResult::interrupt();
|
||||
}
|
||||
|
||||
outlinedFunctions.insert(outlineExecuteOp(symbolTable, execute));
|
||||
|
||||
return WalkResult::advance();
|
||||
});
|
||||
|
||||
// Failed to outline all async execute operations.
|
||||
if (outlineResult.wasInterrupted()) {
|
||||
signalPassFailure();
|
||||
return;
|
||||
}
|
||||
|
||||
LLVM_DEBUG({
|
||||
llvm::dbgs() << "Outlined " << outlinedFunctions.size()
|
||||
<< " async functions\n";
|
||||
});
|
||||
MLIRContext *ctx = module->getContext();
|
||||
|
||||
// Add declarations for all functions required by the coroutines lowering.
|
||||
addResumeFunction(module);
|
||||
addAsyncRuntimeApiDeclarations(module);
|
||||
addCRuntimeDeclarations(module);
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Lower async operations to async.runtime operations.
|
||||
// ------------------------------------------------------------------------ //
|
||||
OwningRewritePatternList asyncPatterns;
|
||||
|
||||
// Async lowering does not use type converter because it must preserve all
|
||||
// types for async.runtime operations.
|
||||
asyncPatterns.insert<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
|
||||
asyncPatterns.insert<AwaitTokenOpLowering, AwaitValueOpLowering,
|
||||
AwaitAllOpLowering, YieldOpLowering>(ctx,
|
||||
outlinedFunctions);
|
||||
|
||||
// All high level async operations must be lowered to the runtime operations.
|
||||
ConversionTarget runtimeTarget(*ctx);
|
||||
runtimeTarget.addLegalDialect<AsyncDialect>();
|
||||
runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
|
||||
runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
|
||||
|
||||
if (failed(applyPartialConversion(module, runtimeTarget,
|
||||
std::move(asyncPatterns)))) {
|
||||
signalPassFailure();
|
||||
return;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Lower async.runtime and async.coro operations to Async Runtime API and
|
||||
// LLVM coroutine intrinsics.
|
||||
// ------------------------------------------------------------------------ //
|
||||
|
||||
// Convert async dialect types and operations to LLVM dialect.
|
||||
AsyncRuntimeTypeConverter converter;
|
||||
OwningRewritePatternList patterns;
|
||||
|
||||
// We use conversion to LLVM type to lower async.runtime load and store
|
||||
// operations.
|
||||
LLVMTypeConverter llvmConverter(ctx);
|
||||
llvmConverter.addConversion(AsyncRuntimeTypeConverter::convertAsyncTypes);
|
||||
|
||||
// Convert async types in function signatures and function calls.
|
||||
populateFuncOpTypeConversionPattern(patterns, ctx, converter);
|
||||
populateCallOpTypeConversionPattern(patterns, ctx, converter);
|
||||
|
|
|
@ -0,0 +1,512 @@
|
|||
//===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements lowering from high level async operations to async.coro
|
||||
// and async.runtime operations.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "PassDetail.h"
|
||||
#include "mlir/Dialect/Async/IR/Async.h"
|
||||
#include "mlir/Dialect/Async/Passes.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
#include "mlir/Transforms/RegionUtils.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::async;
|
||||
|
||||
#define DEBUG_TYPE "async-to-async-runtime"
|
||||
// Prefix for functions outlined from `async.execute` op regions.
|
||||
static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";
|
||||
|
||||
namespace {
|
||||
|
||||
class AsyncToAsyncRuntimePass
|
||||
: public AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
|
||||
public:
|
||||
AsyncToAsyncRuntimePass() = default;
|
||||
void runOnOperation() override;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// async.execute op outlining to the coroutine functions.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// Function targeted for coroutine transformation has two additional blocks at
|
||||
/// the end: coroutine cleanup and coroutine suspension.
|
||||
///
|
||||
/// async.await op lowering additionaly creates a resume block for each
|
||||
/// operation to enable non-blocking waiting via coroutine suspension.
|
||||
namespace {
|
||||
struct CoroMachinery {
|
||||
// Async execute region returns a completion token, and an async value for
|
||||
// each yielded value.
|
||||
//
|
||||
// %token, %result = async.execute -> !async.value<T> {
|
||||
// %0 = constant ... : T
|
||||
// async.yield %0 : T
|
||||
// }
|
||||
Value asyncToken; // token representing completion of the async region
|
||||
llvm::SmallVector<Value, 4> returnValues; // returned async values
|
||||
|
||||
Value coroHandle; // coroutine handle (!async.coro.handle value)
|
||||
Block *cleanup; // coroutine cleanup block
|
||||
Block *suspend; // coroutine suspension block
|
||||
};
|
||||
} // namespace
|
||||
|
||||
/// Builds an coroutine template compatible with LLVM coroutines switched-resume
|
||||
/// lowering using `async.runtime.*` and `async.coro.*` operations.
|
||||
///
|
||||
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
|
||||
///
|
||||
/// - `entry` block sets up the coroutine.
|
||||
/// - `cleanup` block cleans up the coroutine state.
|
||||
/// - `suspend block after the @llvm.coro.end() defines what value will be
|
||||
/// returned to the initial caller of a coroutine. Everything before the
|
||||
/// @llvm.coro.end() will be executed at every suspension point.
|
||||
///
|
||||
/// Coroutine structure (only the important bits):
|
||||
///
|
||||
/// func @async_execute_fn(<function-arguments>)
|
||||
/// -> (!async.token, !async.value<T>)
|
||||
/// {
|
||||
/// ^entry(<function-arguments>):
|
||||
/// %token = <async token> : !async.token // create async runtime token
|
||||
/// %value = <async value> : !async.value<T> // create async value
|
||||
/// %id = async.coro.id // create a coroutine id
|
||||
/// %hdl = async.coro.begin %id // create a coroutine handle
|
||||
/// br ^cleanup
|
||||
///
|
||||
/// ^cleanup:
|
||||
/// async.coro.free %hdl // delete the coroutine state
|
||||
/// br ^suspend
|
||||
///
|
||||
/// ^suspend:
|
||||
/// async.coro.end %hdl // marks the end of a coroutine
|
||||
/// return %token, %value : !async.token, !async.value<T>
|
||||
/// }
|
||||
///
|
||||
/// The actual code for the async.execute operation body region will be inserted
|
||||
/// before the entry block terminator.
|
||||
///
|
||||
///
|
||||
static CoroMachinery setupCoroMachinery(FuncOp func) {
|
||||
assert(func.getBody().empty() && "Function must have empty body");
|
||||
|
||||
MLIRContext *ctx = func.getContext();
|
||||
Block *entryBlock = func.addEntryBlock();
|
||||
|
||||
auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Allocate async token/values that we will return from a ramp function.
|
||||
// ------------------------------------------------------------------------ //
|
||||
auto retToken = builder.create<RuntimeCreateOp>(TokenType::get(ctx)).result();
|
||||
|
||||
llvm::SmallVector<Value, 4> retValues;
|
||||
for (auto resType : func.getCallableResults().drop_front())
|
||||
retValues.emplace_back(builder.create<RuntimeCreateOp>(resType).result());
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Initialize coroutine: get coroutine id and coroutine handle.
|
||||
// ------------------------------------------------------------------------ //
|
||||
auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
|
||||
auto coroHdlOp =
|
||||
builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.id());
|
||||
|
||||
Block *cleanupBlock = func.addBlock();
|
||||
Block *suspendBlock = func.addBlock();
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Coroutine cleanup block: deallocate coroutine frame, free the memory.
|
||||
// ------------------------------------------------------------------------ //
|
||||
builder.setInsertionPointToStart(cleanupBlock);
|
||||
builder.create<CoroFreeOp>(coroIdOp.id(), coroHdlOp.handle());
|
||||
|
||||
// Branch into the suspend block.
|
||||
builder.create<BranchOp>(suspendBlock);
|
||||
|
||||
// ------------------------------------------------------------------------ //
|
||||
// Coroutine suspend block: mark the end of a coroutine and return allocated
|
||||
// async token.
|
||||
// ------------------------------------------------------------------------ //
|
||||
builder.setInsertionPointToStart(suspendBlock);
|
||||
|
||||
// Mark the end of a coroutine: async.coro.end
|
||||
builder.create<CoroEndOp>(coroHdlOp.handle());
|
||||
|
||||
// Return created `async.token` and `async.values` from the suspend block.
|
||||
// This will be the return value of a coroutine ramp function.
|
||||
SmallVector<Value, 4> ret{retToken};
|
||||
ret.insert(ret.end(), retValues.begin(), retValues.end());
|
||||
builder.create<ReturnOp>(ret);
|
||||
|
||||
// Branch from the entry block to the cleanup block to create a valid CFG.
|
||||
builder.setInsertionPointToEnd(entryBlock);
|
||||
builder.create<BranchOp>(cleanupBlock);
|
||||
|
||||
// `async.await` op lowering will create resume blocks for async
|
||||
// continuations, and will conditionally branch to cleanup or suspend blocks.
|
||||
|
||||
CoroMachinery machinery;
|
||||
machinery.asyncToken = retToken;
|
||||
machinery.returnValues = retValues;
|
||||
machinery.coroHandle = coroHdlOp.handle();
|
||||
machinery.cleanup = cleanupBlock;
|
||||
machinery.suspend = suspendBlock;
|
||||
return machinery;
|
||||
}
|
||||
|
||||
/// Outline the body region attached to the `async.execute` op into a standalone
|
||||
/// function.
|
||||
///
|
||||
/// Note that this is not reversible transformation.
|
||||
static std::pair<FuncOp, CoroMachinery>
|
||||
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
|
||||
ModuleOp module = execute->getParentOfType<ModuleOp>();
|
||||
|
||||
MLIRContext *ctx = module.getContext();
|
||||
Location loc = execute.getLoc();
|
||||
|
||||
// Collect all outlined function inputs.
|
||||
llvm::SetVector<mlir::Value> functionInputs(execute.dependencies().begin(),
|
||||
execute.dependencies().end());
|
||||
functionInputs.insert(execute.operands().begin(), execute.operands().end());
|
||||
getUsedValuesDefinedAbove(execute.body(), functionInputs);
|
||||
|
||||
// Collect types for the outlined function inputs and outputs.
|
||||
auto typesRange = llvm::map_range(
|
||||
functionInputs, [](Value value) { return value.getType(); });
|
||||
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
|
||||
auto outputTypes = execute.getResultTypes();
|
||||
|
||||
auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
|
||||
auto funcAttrs = ArrayRef<NamedAttribute>();
|
||||
|
||||
// TODO: Derive outlined function name from the parent FuncOp (support
|
||||
// multiple nested async.execute operations).
|
||||
FuncOp func = FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
|
||||
symbolTable.insert(func, Block::iterator(module.getBody()->getTerminator()));
|
||||
|
||||
SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
|
||||
|
||||
// Prepare a function for coroutine lowering by adding entry/cleanup/suspend
|
||||
// blocks, adding async.coro operations and setting up control flow.
|
||||
CoroMachinery coro = setupCoroMachinery(func);
|
||||
|
||||
// Suspend async function at the end of an entry block, and resume it using
|
||||
// Async resume operation (execution will be resumed in a thread managed by
|
||||
// the async runtime).
|
||||
Block *entryBlock = &func.getBlocks().front();
|
||||
auto builder = ImplicitLocOpBuilder::atBlockTerminator(loc, entryBlock);
|
||||
|
||||
// Save the coroutine state: async.coro.save
|
||||
auto coroSaveOp =
|
||||
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
||||
|
||||
// Pass coroutine to the runtime to be resumed on a runtime managed thread.
|
||||
builder.create<RuntimeResumeOp>(coro.coroHandle);
|
||||
|
||||
// Split the entry block before the terminator (branch to suspend block).
|
||||
auto *terminatorOp = entryBlock->getTerminator();
|
||||
Block *suspended = terminatorOp->getBlock();
|
||||
Block *resume = suspended->splitBlock(terminatorOp);
|
||||
|
||||
// Add async.coro.suspend as a suspended block terminator.
|
||||
builder.setInsertionPointToEnd(suspended);
|
||||
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
|
||||
coro.cleanup);
|
||||
|
||||
size_t numDependencies = execute.dependencies().size();
|
||||
size_t numOperands = execute.operands().size();
|
||||
|
||||
// Await on all dependencies before starting to execute the body region.
|
||||
builder.setInsertionPointToStart(resume);
|
||||
for (size_t i = 0; i < numDependencies; ++i)
|
||||
builder.create<AwaitOp>(func.getArgument(i));
|
||||
|
||||
// Await on all async value operands and unwrap the payload.
|
||||
SmallVector<Value, 4> unwrappedOperands(numOperands);
|
||||
for (size_t i = 0; i < numOperands; ++i) {
|
||||
Value operand = func.getArgument(numDependencies + i);
|
||||
unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).result();
|
||||
}
|
||||
|
||||
// Map from function inputs defined above the execute op to the function
|
||||
// arguments.
|
||||
BlockAndValueMapping valueMapping;
|
||||
valueMapping.map(functionInputs, func.getArguments());
|
||||
valueMapping.map(execute.body().getArguments(), unwrappedOperands);
|
||||
|
||||
// Clone all operations from the execute operation body into the outlined
|
||||
// function body.
|
||||
for (Operation &op : execute.body().getOps())
|
||||
builder.clone(op, valueMapping);
|
||||
|
||||
// Replace the original `async.execute` with a call to outlined function.
|
||||
ImplicitLocOpBuilder callBuilder(loc, execute);
|
||||
auto callOutlinedFunc = callBuilder.create<CallOp>(
|
||||
func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
|
||||
execute.replaceAllUsesWith(callOutlinedFunc.getResults());
|
||||
execute.erase();
|
||||
|
||||
return {func, coro};
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.create_group operation to async.runtime.create
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(CreateGroupOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<RuntimeCreateOp>(
|
||||
op, GroupType::get(op->getContext()));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.add_to_group operation to async.runtime.add_to_group.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
|
||||
public:
|
||||
using OpConversionPattern::OpConversionPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(AddToGroupOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
|
||||
op, rewriter.getIndexType(), operands);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.await and async.await_all operations to the async.runtime.await
|
||||
// or async.runtime.await_and_resume operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
template <typename AwaitType, typename AwaitableType>
|
||||
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
|
||||
using AwaitAdaptor = typename AwaitType::Adaptor;
|
||||
|
||||
public:
|
||||
AwaitOpLoweringBase(
|
||||
MLIRContext *ctx,
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
||||
: OpConversionPattern<AwaitType>(ctx),
|
||||
outlinedFunctions(outlinedFunctions) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(AwaitType op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// We can only await on one the `AwaitableType` (for `await` it can be
|
||||
// a `token` or a `value`, for `await_all` it must be a `group`).
|
||||
if (!op.operand().getType().template isa<AwaitableType>())
|
||||
return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
|
||||
|
||||
// Check if await operation is inside the outlined coroutine function.
|
||||
auto func = op->template getParentOfType<FuncOp>();
|
||||
auto outlined = outlinedFunctions.find(func);
|
||||
const bool isInCoroutine = outlined != outlinedFunctions.end();
|
||||
|
||||
Location loc = op->getLoc();
|
||||
Value operand = AwaitAdaptor(operands).operand();
|
||||
|
||||
// Inside regular functions we use the blocking wait operation to wait for
|
||||
// the async object (token, value or group) to become available.
|
||||
if (!isInCoroutine)
|
||||
rewriter.create<RuntimeAwaitOp>(loc, operand);
|
||||
|
||||
// Inside the coroutine we convert await operation into coroutine suspension
|
||||
// point, and resume execution asynchronously.
|
||||
if (isInCoroutine) {
|
||||
const CoroMachinery &coro = outlined->getSecond();
|
||||
Block *suspended = op->getBlock();
|
||||
|
||||
ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
|
||||
MLIRContext *ctx = op->getContext();
|
||||
|
||||
// Save the coroutine state and resume on a runtime managed thread when
|
||||
// the operand becomes available.
|
||||
auto coroSaveOp =
|
||||
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
|
||||
builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
|
||||
|
||||
// Split the entry block before the await operation.
|
||||
Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
|
||||
|
||||
// Add async.coro.suspend as a suspended block terminator.
|
||||
builder.setInsertionPointToEnd(suspended);
|
||||
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
|
||||
coro.cleanup);
|
||||
|
||||
// Make sure that replacement value will be constructed in resume block.
|
||||
rewriter.setInsertionPointToStart(resume);
|
||||
}
|
||||
|
||||
// Erase or replace the await operation with the new value.
|
||||
if (Value replaceWith = getReplacementValue(op, operand, rewriter))
|
||||
rewriter.replaceOp(op, replaceWith);
|
||||
else
|
||||
rewriter.eraseOp(op);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
virtual Value getReplacementValue(AwaitType op, Value operand,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
return Value();
|
||||
}
|
||||
|
||||
private:
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
||||
};
|
||||
|
||||
/// Lowering for `async.await` with a token operand.
|
||||
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
};
|
||||
|
||||
/// Lowering for `async.await` with a value operand.
|
||||
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
|
||||
Value
|
||||
getReplacementValue(AwaitOp op, Value operand,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// Load from the async value storage.
|
||||
auto valueType = operand.getType().cast<ValueType>().getValueType();
|
||||
return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
|
||||
}
|
||||
};
|
||||
|
||||
/// Lowering for `async.await_all` operation.
|
||||
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
|
||||
using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
|
||||
|
||||
public:
|
||||
using Base::Base;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Convert async.yield operation to async.runtime operations.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
|
||||
public:
|
||||
YieldOpLowering(
|
||||
MLIRContext *ctx,
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
|
||||
: OpConversionPattern<async::YieldOp>(ctx),
|
||||
outlinedFunctions(outlinedFunctions) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(async::YieldOp op, ArrayRef<Value> operands,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// Check if yield operation is inside the outlined coroutine function.
|
||||
auto func = op->template getParentOfType<FuncOp>();
|
||||
auto outlined = outlinedFunctions.find(func);
|
||||
if (outlined == outlinedFunctions.end())
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "operation is not inside the outlined async.execute function");
|
||||
|
||||
Location loc = op->getLoc();
|
||||
const CoroMachinery &coro = outlined->getSecond();
|
||||
|
||||
// Store yielded values into the async values storage and switch async
|
||||
// values state to available.
|
||||
for (auto tuple : llvm::zip(operands, coro.returnValues)) {
|
||||
Value yieldValue = std::get<0>(tuple);
|
||||
Value asyncValue = std::get<1>(tuple);
|
||||
rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
|
||||
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
|
||||
}
|
||||
|
||||
// Switch the coroutine completion token to available state.
|
||||
rewriter.replaceOpWithNewOp<RuntimeSetAvailableOp>(op, coro.asyncToken);
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
private:
|
||||
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
|
||||
};
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void AsyncToAsyncRuntimePass::runOnOperation() {
|
||||
ModuleOp module = getOperation();
|
||||
SymbolTable symbolTable(module);
|
||||
|
||||
// Outline all `async.execute` body regions into async functions (coroutines).
|
||||
llvm::DenseMap<FuncOp, CoroMachinery> outlinedFunctions;
|
||||
|
||||
module.walk([&](ExecuteOp execute) {
|
||||
outlinedFunctions.insert(outlineExecuteOp(symbolTable, execute));
|
||||
});
|
||||
|
||||
LLVM_DEBUG({
|
||||
llvm::dbgs() << "Outlined " << outlinedFunctions.size()
|
||||
<< " functions built from async.execute operations\n";
|
||||
});
|
||||
|
||||
// Lower async operations to async.runtime operations.
|
||||
MLIRContext *ctx = module->getContext();
|
||||
OwningRewritePatternList asyncPatterns;
|
||||
|
||||
// Async lowering does not use type converter because it must preserve all
|
||||
// types for async.runtime operations.
|
||||
asyncPatterns.insert<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
|
||||
asyncPatterns.insert<AwaitTokenOpLowering, AwaitValueOpLowering,
|
||||
AwaitAllOpLowering, YieldOpLowering>(ctx,
|
||||
outlinedFunctions);
|
||||
|
||||
// All high level async operations must be lowered to the runtime operations.
|
||||
ConversionTarget runtimeTarget(*ctx);
|
||||
runtimeTarget.addLegalDialect<AsyncDialect>();
|
||||
runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
|
||||
runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
|
||||
|
||||
if (failed(applyPartialConversion(module, runtimeTarget,
|
||||
std::move(asyncPatterns)))) {
|
||||
signalPassFailure();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
|
||||
return std::make_unique<AsyncToAsyncRuntimePass>();
|
||||
}
|
|
@ -2,6 +2,7 @@ add_mlir_dialect_library(MLIRAsyncTransforms
|
|||
AsyncParallelFor.cpp
|
||||
AsyncRefCounting.cpp
|
||||
AsyncRefCountingOptimization.cpp
|
||||
AsyncToAsyncRuntime.cpp
|
||||
|
||||
ADDITIONAL_HEADER_DIRS
|
||||
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Async
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
// RUN: mlir-opt %s -split-input-file -convert-async-to-llvm | FileCheck %s
|
||||
// RUN: mlir-opt %s -split-input-file -async-to-async-runtime -convert-async-to-llvm | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: reference_counting
|
||||
func @reference_counting(%arg0: !async.token) {
|
||||
|
@ -247,8 +247,7 @@ func @execute_and_return_f32() -> f32 {
|
|||
|
||||
// -----
|
||||
|
||||
// RUN: mlir-opt %s -split-input-file -convert-async-to-llvm | FileCheck %s
|
||||
|
||||
// CHECK-LABEL: @async_value_operands
|
||||
func @async_value_operands() {
|
||||
// CHECK: %[[RET:.*]]:2 = call @async_execute_fn
|
||||
%token, %result = async.execute -> !async.value<f32> {
|
||||
|
|
|
@ -0,0 +1,303 @@
|
|||
// RUN: mlir-opt %s -split-input-file -async-to-async-runtime -print-ir-after-all | FileCheck %s --dump-input=always
|
||||
|
||||
// CHECK-LABEL: @execute_no_async_args
|
||||
func @execute_no_async_args(%arg0: f32, %arg1: memref<1xf32>) {
|
||||
%token = async.execute {
|
||||
%c0 = constant 0 : index
|
||||
store %arg0, %arg1[%c0] : memref<1xf32>
|
||||
async.yield
|
||||
}
|
||||
async.await %token : !async.token
|
||||
return
|
||||
}
|
||||
|
||||
// Function outlined from the async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn
|
||||
// CHECK-SAME: -> !async.token
|
||||
|
||||
// Create token for return op, and mark a function as a coroutine.
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[ID:.*]] = async.coro.id
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Pass a suspended coroutine to the async runtime.
|
||||
// CHECK: %[[SAVED:.*]] = async.coro.save %[[HDL]]
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend %[[SAVED]]
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Resume coroutine after suspension.
|
||||
// CHECK: ^[[RESUME]]:
|
||||
// CHECK: store
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// Delete coroutine.
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: async.coro.free %[[ID]], %[[HDL]]
|
||||
|
||||
// Suspend coroutine, and also a return statement for ramp function.
|
||||
// CHECK: ^[[SUSPEND]]:
|
||||
// CHECK: async.coro.end %[[HDL]]
|
||||
// CHECK: return %[[TOKEN]]
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @nested_async_execute
|
||||
func @nested_async_execute(%arg0: f32, %arg1: f32, %arg2: memref<1xf32>) {
|
||||
// CHECK: %[[TOKEN:.*]] = call @async_execute_fn_0(%arg0, %arg2, %arg1)
|
||||
%token0 = async.execute {
|
||||
%c0 = constant 0 : index
|
||||
|
||||
%token1 = async.execute {
|
||||
%c1 = constant 1: index
|
||||
store %arg0, %arg2[%c0] : memref<1xf32>
|
||||
async.yield
|
||||
}
|
||||
async.await %token1 : !async.token
|
||||
|
||||
store %arg1, %arg2[%c0] : memref<1xf32>
|
||||
async.yield
|
||||
}
|
||||
// CHECK: async.runtime.await %[[TOKEN]]
|
||||
// CHECK-NEXT: return
|
||||
async.await %token0 : !async.token
|
||||
return
|
||||
}
|
||||
|
||||
// Function outlined from the inner async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn
|
||||
// CHECK-SAME: -> !async.token
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[ID:.*]] = async.coro.id
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// CHECK: ^[[RESUME]]:
|
||||
// CHECK: store
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// Function outlined from the outer async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn_0
|
||||
// CHECK-SAME: -> !async.token
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[ID:.*]] = async.coro.id
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Suspend coroutine in the beginning.
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME_0:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Suspend coroutine second time waiting for the completion of inner execute op.
|
||||
// CHECK: ^[[RESUME_0]]:
|
||||
// CHECK: %[[INNER_TOKEN:.*]] = call @async_execute_fn
|
||||
// CHECK: %[[SAVED:.*]] = async.coro.save %[[HDL]]
|
||||
// CHECK: async.runtime.await_and_resume %[[INNER_TOKEN]], %[[HDL]]
|
||||
// CHECK: async.coro.suspend %[[SAVED]]
|
||||
// CHECK-SAME: ^[[SUSPEND]], ^[[RESUME_1:.*]], ^[[CLEANUP]]
|
||||
|
||||
// Set token available after second resumption.
|
||||
// CHECK: ^[[RESUME_1]]:
|
||||
// CHECK: store
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: ^[[SUSPEND]]:
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @async_execute_token_dependency
|
||||
func @async_execute_token_dependency(%arg0: f32, %arg1: memref<1xf32>) {
|
||||
// CHECK: %[[TOKEN:.*]] = call @async_execute_fn
|
||||
%token = async.execute {
|
||||
%c0 = constant 0 : index
|
||||
store %arg0, %arg1[%c0] : memref<1xf32>
|
||||
async.yield
|
||||
}
|
||||
// CHECK: call @async_execute_fn_0(%[[TOKEN]], %arg0, %arg1)
|
||||
%token_0 = async.execute [%token] {
|
||||
%c0 = constant 0 : index
|
||||
store %arg0, %arg1[%c0] : memref<1xf32>
|
||||
async.yield
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Function outlined from the first async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn
|
||||
// CHECK-SAME: -> !async.token
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: return %[[TOKEN]] : !async.token
|
||||
|
||||
// Function outlined from the second async.execute operation with dependency.
|
||||
// CHECK-LABEL: func private @async_execute_fn_0
|
||||
// CHECK-SAME: %[[ARG0:.*]]: !async.token
|
||||
// CHECK-SAME: %[[ARG1:.*]]: f32
|
||||
// CHECK-SAME: %[[ARG2:.*]]: memref<1xf32>
|
||||
// CHECK-SAME: -> !async.token
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Suspend coroutine in the beginning.
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME_0:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Suspend coroutine second time waiting for the completion of token dependency.
|
||||
// CHECK: ^[[RESUME_0]]:
|
||||
// CHECK: %[[SAVED:.*]] = async.coro.save %[[HDL]]
|
||||
// CHECK: async.runtime.await_and_resume %[[ARG0]], %[[HDL]]
|
||||
// CHECK: async.coro.suspend %[[SAVED]]
|
||||
// CHECK-SAME: ^[[SUSPEND]], ^[[RESUME_1:.*]], ^[[CLEANUP]]
|
||||
|
||||
// Emplace result token after second resumption.
|
||||
// CHECK: ^[[RESUME_1]]:
|
||||
// CHECK: store
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: ^[[SUSPEND]]:
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @async_group_await_all
|
||||
func @async_group_await_all(%arg0: f32, %arg1: memref<1xf32>) {
|
||||
// CHECK: %[[GROUP:.*]] = async.runtime.create : !async.group
|
||||
%0 = async.create_group
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = call @async_execute_fn
|
||||
%token = async.execute { async.yield }
|
||||
// CHECK: async.runtime.add_to_group %[[TOKEN]], %[[GROUP]]
|
||||
async.add_to_group %token, %0 : !async.token
|
||||
|
||||
// CHECK: call @async_execute_fn_0
|
||||
async.execute {
|
||||
async.await_all %0
|
||||
async.yield
|
||||
}
|
||||
|
||||
// CHECK: async.runtime.await %[[GROUP]] : !async.group
|
||||
async.await_all %0
|
||||
return
|
||||
}
|
||||
|
||||
// Function outlined from the second async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn_0
|
||||
// CHECK-SAME: (%[[ARG:.*]]: !async.group) -> !async.token
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Suspend coroutine in the beginning.
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME_0:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Suspend coroutine second time waiting for the group.
|
||||
// CHECK: ^[[RESUME_0]]:
|
||||
// CHECK: async.runtime.await_and_resume %[[ARG]], %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND]], ^[[RESUME_1:.*]], ^[[CLEANUP]]
|
||||
|
||||
// Emplace result token.
|
||||
// CHECK: ^[[RESUME_1]]:
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: ^[[SUSPEND]]:
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @execute_and_return_f32
|
||||
func @execute_and_return_f32() -> f32 {
|
||||
// CHECK: %[[RET:.*]]:2 = call @async_execute_fn
|
||||
%token, %result = async.execute -> !async.value<f32> {
|
||||
%c0 = constant 123.0 : f32
|
||||
async.yield %c0 : f32
|
||||
}
|
||||
|
||||
// CHECK: async.runtime.await %[[RET]]#1 : !async.value<f32>
|
||||
// CHECK: %[[VALUE:.*]] = async.runtime.load %[[RET]]#1 : !async.value<f32>
|
||||
%0 = async.await %result : !async.value<f32>
|
||||
|
||||
// CHECK: return %[[VALUE]]
|
||||
return %0 : f32
|
||||
}
|
||||
|
||||
// Function outlined from the async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn()
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[VALUE:.*]] = async.runtime.create : !async.value<f32>
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Suspend coroutine in the beginning.
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Emplace result value.
|
||||
// CHECK: ^[[RESUME]]:
|
||||
// CHECK: %[[CST:.*]] = constant 1.230000e+02 : f32
|
||||
// CHECK: async.runtime.store %cst, %[[VALUE]]
|
||||
// CHECK: async.runtime.set_available %[[VALUE]]
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: ^[[SUSPEND]]:
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @async_value_operands
|
||||
func @async_value_operands() {
|
||||
// CHECK: %[[RET:.*]]:2 = call @async_execute_fn
|
||||
%token, %result = async.execute -> !async.value<f32> {
|
||||
%c0 = constant 123.0 : f32
|
||||
async.yield %c0 : f32
|
||||
}
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = call @async_execute_fn_0(%[[RET]]#1)
|
||||
%token0 = async.execute(%result as %value: !async.value<f32>) {
|
||||
%0 = addf %value, %value : f32
|
||||
async.yield
|
||||
}
|
||||
|
||||
// CHECK: async.runtime.await %[[TOKEN]] : !async.token
|
||||
async.await %token0 : !async.token
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
// Function outlined from the first async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn()
|
||||
|
||||
// Function outlined from the second async.execute operation.
|
||||
// CHECK-LABEL: func private @async_execute_fn_0
|
||||
// CHECK-SAME: (%[[ARG:.*]]: !async.value<f32>) -> !async.token
|
||||
|
||||
// CHECK: %[[TOKEN:.*]] = async.runtime.create : !async.token
|
||||
// CHECK: %[[HDL:.*]] = async.coro.begin
|
||||
|
||||
// Suspend coroutine in the beginning.
|
||||
// CHECK: async.runtime.resume %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND:.*]], ^[[RESUME_0:.*]], ^[[CLEANUP:.*]]
|
||||
|
||||
// Suspend coroutine second time waiting for the async operand.
|
||||
// CHECK: ^[[RESUME_0]]:
|
||||
// CHECK: async.runtime.await_and_resume %[[ARG]], %[[HDL]]
|
||||
// CHECK: async.coro.suspend
|
||||
// CHECK-SAME: ^[[SUSPEND]], ^[[RESUME_1:.*]], ^[[CLEANUP]]
|
||||
|
||||
// Load from the async.value argument.
|
||||
// CHECK: ^[[RESUME_1]]:
|
||||
// CHECK: %[[LOADED:.*]] = async.runtime.load %[[ARG]] : !async.value<f32
|
||||
// CHECK: addf %[[LOADED]], %[[LOADED]] : f32
|
||||
// CHECK: async.runtime.set_available %[[TOKEN]]
|
||||
|
||||
// CHECK: ^[[CLEANUP]]:
|
||||
// CHECK: ^[[SUSPEND]]:
|
|
@ -1,4 +1,5 @@
|
|||
// RUN: mlir-opt %s -async-ref-counting \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -convert-std-to-llvm \
|
||||
// RUN: | mlir-cpu-runner \
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
// RUN: mlir-opt %s -async-ref-counting \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -convert-vector-to-llvm \
|
||||
// RUN: -convert-std-to-llvm \
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
// RUN: mlir-opt %s -async-ref-counting \
|
||||
// RUN: -async-to-async-runtime \
|
||||
// RUN: -convert-async-to-llvm \
|
||||
// RUN: -convert-linalg-to-loops \
|
||||
// RUN: -convert-linalg-to-llvm \
|
||||
|
|
Loading…
Reference in New Issue