constexpr: Implement the [dcl.constexpr]p5 check for whether a constexpr

function definition can produce a constant expression. This also provides the
last few checks for [dcl.constexpr]p3 and [dcl.constexpr]p4.

llvm-svn: 149108
This commit is contained in:
Richard Smith 2012-01-27 01:14:48 +00:00
parent af0bdfc692
commit 253c2a390a
9 changed files with 343 additions and 115 deletions

View File

@ -425,6 +425,14 @@ public:
bool isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result = 0,
SourceLocation *Loc = 0) const;
/// isPotentialConstantExpr - Return true if this function's definition
/// might be usable in a constant expression in C++11, if it were marked
/// constexpr. Return false if the function can never produce a constant
/// expression, along with diagnostics describing why not.
static bool isPotentialConstantExpr(const FunctionDecl *FD,
llvm::SmallVectorImpl<
PartialDiagnosticAt> &Diags);
/// isConstantInitializer - Returns true if this expression can be emitted to
/// IR as a constant, and thus can be used as a constant initializer in C.
bool isConstantInitializer(ASTContext &Ctx, bool ForRef) const;

View File

@ -1360,6 +1360,9 @@ def err_constexpr_vla : Error<
"%select{function|constructor}1">;
def err_constexpr_var_declaration : Error<
"variables cannot be declared in a constexpr %select{function|constructor}0">;
def err_constexpr_function_never_constant_expr : Error<
"constexpr %select{function|constructor}0 never produces "
"a constant expression">;
def err_constexpr_body_no_return : Error<
"no return statement in constexpr function">;
def err_constexpr_body_multiple_return : Error<

View File

@ -9,6 +9,28 @@
//
// This file implements the Expr constant evaluator.
//
// Constant expression evaluation produces four main results:
//
// * A success/failure flag indicating whether constant folding was successful.
// This is the 'bool' return value used by most of the code in this file. A
// 'false' return value indicates that constant folding has failed, and any
// appropriate diagnostic has already been produced.
//
// * An evaluated result, valid only if constant folding has not failed.
//
// * A flag indicating if evaluation encountered (unevaluated) side-effects.
// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
// where it is possible to determine the evaluated result regardless.
//
// * A set of notes indicating why the evaluation was not a constant expression
// (under the C++11 rules only, at the moment), or, if folding failed too,
// why the expression could not be folded.
//
// If we are checking for a potential constant expression, failure to constant
// fold a potential constant sub-expression will be indicated by a 'false'
// return value (the expression could not be folded) and no diagnostic (the
// expression is not necessarily non-constant).
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
@ -346,7 +368,7 @@ namespace {
MapTy OpaqueValues;
/// BottomFrame - The frame in which evaluation started. This must be
/// initialized last.
/// initialized after CurrentCall and CallStackDepth.
CallStackFrame BottomFrame;
/// EvaluatingDecl - This is the declaration whose initializer is being
@ -361,11 +383,17 @@ namespace {
/// notes attached to it will also be stored, otherwise they will not be.
bool HasActiveDiagnostic;
/// CheckingPotentialConstantExpression - Are we checking whether the
/// expression is a potential constant expression? If so, some diagnostics
/// are suppressed.
bool CheckingPotentialConstantExpression;
EvalInfo(const ASTContext &C, Expr::EvalStatus &S)
: Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
CallStackDepth(0), BottomFrame(*this, SourceLocation(), 0, 0, 0),
EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false) {}
EvaluatingDecl(0), EvaluatingDeclValue(0), HasActiveDiagnostic(false),
CheckingPotentialConstantExpression(false) {}
const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const {
MapTy::const_iterator i = OpaqueValues.find(e);
@ -381,6 +409,10 @@ namespace {
const LangOptions &getLangOpts() const { return Ctx.getLangOptions(); }
bool CheckCallLimit(SourceLocation Loc) {
// Don't perform any constexpr calls (other than the call we're checking)
// when checking a potential constant expression.
if (CheckingPotentialConstantExpression && CallStackDepth > 1)
return false;
if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
return true;
Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
@ -412,12 +444,15 @@ namespace {
unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
if (Limit)
CallStackNotes = std::min(CallStackNotes, Limit + 1);
if (CheckingPotentialConstantExpression)
CallStackNotes = 0;
HasActiveDiagnostic = true;
EvalStatus.Diag->clear();
EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
addDiag(Loc, DiagId);
addCallStack(Limit);
if (!CheckingPotentialConstantExpression)
addCallStack(Limit);
return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
}
HasActiveDiagnostic = false;
@ -449,6 +484,12 @@ namespace {
Diags.begin(), Diags.end());
}
}
/// Should we continue evaluation as much as possible after encountering a
/// construct which can't be folded?
bool keepEvaluatingAfterFailure() {
return CheckingPotentialConstantExpression && EvalStatus.Diag->empty();
}
};
}
@ -827,6 +868,14 @@ static bool IsGlobalLValue(APValue::LValueBase B) {
// Block variables at global or local static scope.
case Expr::BlockExprClass:
return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
case Expr::ImplicitValueInitExprClass:
// FIXME:
// We can never form an lvalue with an implicit value initialization as its
// base through expression evaluation, so these only appear in one case: the
// implicit variable declaration we invent when checking whether a constexpr
// constructor can produce a constant expression. We must assume that such
// an expression might be a global lvalue.
return true;
}
}
@ -1238,6 +1287,10 @@ static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
// If this is a parameter to an active constexpr function call, perform
// argument substitution.
if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
// Assume arguments of a potential constant expression are unknown
// constant expressions.
if (Info.CheckingPotentialConstantExpression)
return false;
if (!Frame || !Frame->Arguments) {
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
return false;
@ -1249,7 +1302,10 @@ static bool EvaluateVarDeclInit(EvalInfo &Info, const Expr *E,
// Dig out the initializer, and use the declaration which it's attached to.
const Expr *Init = VD->getAnyInitializer(VD);
if (!Init || Init->isValueDependent()) {
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
// If we're checking a potential constant expression, the variable could be
// initialized later.
if (!Info.CheckingPotentialConstantExpression)
Info.Diag(E->getExprLoc(), diag::note_invalid_subexpr_in_const_expr);
return false;
}
@ -1323,6 +1379,9 @@ static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
}
if (Sub.Entries.empty())
return true;
if (Info.CheckingPotentialConstantExpression && Obj.isUninit())
// This object might be initialized later.
return false;
assert(!Obj.isLValue() && "extracting subobject of lvalue");
const APValue *O = &Obj;
@ -1383,7 +1442,8 @@ static bool ExtractSubobject(EvalInfo &Info, const Expr *E,
}
if (O->isUninit()) {
Info.Diag(E->getExprLoc(), diag::note_constexpr_read_uninit);
if (!Info.CheckingPotentialConstantExpression)
Info.Diag(E->getExprLoc(), diag::note_constexpr_read_uninit);
return false;
}
}
@ -1603,7 +1663,8 @@ static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
bool IncludeMember = true) {
assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
if (!EvaluateObjectArgument(Info, BO->getLHS(), LV))
bool EvalObjOK = EvaluateObjectArgument(Info, BO->getLHS(), LV);
if (!EvalObjOK && !Info.keepEvaluatingAfterFailure())
return 0;
MemberPtr MemPtr;
@ -1615,6 +1676,9 @@ static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
if (!MemPtr.getDecl())
return 0;
if (!EvalObjOK)
return 0;
if (MemPtr.isDerivedMember()) {
// This is a member of some derived class. Truncate LV appropriately.
// The end of the derived-to-base path for the base object must match the
@ -1786,6 +1850,12 @@ static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
const FunctionDecl *Declaration,
const FunctionDecl *Definition) {
// Potential constant expressions can contain calls to declared, but not yet
// defined, constexpr functions.
if (Info.CheckingPotentialConstantExpression && !Definition &&
Declaration->isConstexpr())
return false;
// Can we evaluate this function call?
if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
return true;
@ -1811,44 +1881,49 @@ typedef SmallVector<CCValue, 8> ArgVector;
/// EvaluateArgs - Evaluate the arguments to a function call.
static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
EvalInfo &Info) {
bool Success = true;
for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
I != E; ++I)
if (!Evaluate(ArgValues[I - Args.begin()], Info, *I))
return false;
return true;
I != E; ++I) {
if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
// If we're checking for a potential constant expression, evaluate all
// initializers even if some of them fail.
if (!Info.keepEvaluatingAfterFailure())
return false;
Success = false;
}
}
return Success;
}
/// Evaluate a function call.
static bool HandleFunctionCall(const Expr *CallExpr, const FunctionDecl *Callee,
const LValue *This,
static bool HandleFunctionCall(SourceLocation CallLoc,
const FunctionDecl *Callee, const LValue *This,
ArrayRef<const Expr*> Args, const Stmt *Body,
EvalInfo &Info, APValue &Result) {
if (!Info.CheckCallLimit(CallExpr->getExprLoc()))
return false;
ArgVector ArgValues(Args.size());
if (!EvaluateArgs(Args, ArgValues, Info))
return false;
CallStackFrame Frame(Info, CallExpr->getExprLoc(), Callee, This,
ArgValues.data());
if (!Info.CheckCallLimit(CallLoc))
return false;
CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
return EvaluateStmt(Result, Info, Body) == ESR_Returned;
}
/// Evaluate a constructor call.
static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
ArrayRef<const Expr*> Args,
const CXXConstructorDecl *Definition,
EvalInfo &Info, APValue &Result) {
if (!Info.CheckCallLimit(CallExpr->getExprLoc()))
return false;
ArgVector ArgValues(Args.size());
if (!EvaluateArgs(Args, ArgValues, Info))
return false;
CallStackFrame Frame(Info, CallExpr->getExprLoc(), Definition,
&This, ArgValues.data());
if (!Info.CheckCallLimit(CallLoc))
return false;
CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
// If it's a delegating constructor, just delegate.
if (Definition->isDelegatingConstructor()) {
@ -1866,9 +1941,14 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
LValue RHS;
RHS.setFrom(ArgValues[0]);
CCValue Value;
return HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
RHS, Value) &&
CheckConstantExpression(Info, CallExpr, Value, Result);
if (!HandleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
RHS, Value))
return false;
assert((Value.isStruct() || Value.isUnion()) &&
"trivial copy/move from non-class type?");
// Any CCValue of class type must already be a constant expression.
Result = Value;
return true;
}
// Reserve space for the struct members.
@ -1878,12 +1958,17 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
bool Success = true;
unsigned BasesSeen = 0;
#ifndef NDEBUG
CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
#endif
for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
E = Definition->init_end(); I != E; ++I) {
LValue Subobject = This;
APValue *Value = &Result;
// Determine the subobject to initialize.
if ((*I)->isBaseInitializer()) {
QualType BaseType((*I)->getBaseClass(), 0);
#ifndef NDEBUG
@ -1894,27 +1979,18 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
"base class initializers not in expected order");
++BaseIt;
#endif
LValue Subobject = This;
HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
BaseType->getAsCXXRecordDecl(), &Layout);
if (!EvaluateConstantExpression(Result.getStructBase(BasesSeen++), Info,
Subobject, (*I)->getInit()))
return false;
Value = &Result.getStructBase(BasesSeen++);
} else if (FieldDecl *FD = (*I)->getMember()) {
LValue Subobject = This;
HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout);
if (RD->isUnion()) {
Result = APValue(FD);
if (!EvaluateConstantExpression(Result.getUnionValue(), Info, Subobject,
(*I)->getInit(), CCEK_MemberInit))
return false;
} else if (!EvaluateConstantExpression(
Result.getStructField(FD->getFieldIndex()),
Info, Subobject, (*I)->getInit(), CCEK_MemberInit))
return false;
Value = &Result.getUnionValue();
} else {
Value = &Result.getStructField(FD->getFieldIndex());
}
} else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
LValue Subobject = This;
APValue *Value = &Result;
// Walk the indirect field decl's chain to find the object to initialize,
// and make sure we've initialized every step along it.
for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
@ -1935,21 +2011,28 @@ static bool HandleConstructorCall(const Expr *CallExpr, const LValue &This,
*Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
std::distance(CD->field_begin(), CD->field_end()));
}
HandleLValueMember(Info, (*I)->getInit(), Subobject, FD);
if (CD->isUnion())
Value = &Value->getUnionValue();
else
Value = &Value->getStructField(FD->getFieldIndex());
HandleLValueMember(Info, (*I)->getInit(), Subobject, FD);
}
if (!EvaluateConstantExpression(*Value, Info, Subobject, (*I)->getInit(),
CCEK_MemberInit))
return false;
} else {
llvm_unreachable("unknown base initializer kind");
}
if (!EvaluateConstantExpression(*Value, Info, Subobject, (*I)->getInit(),
(*I)->isBaseInitializer()
? CCEK_Constant : CCEK_MemberInit)) {
// If we're checking for a potential constant expression, evaluate all
// initializers even if some of them fail.
if (!Info.keepEvaluatingAfterFailure())
return false;
Success = false;
}
}
return true;
return Success;
}
namespace {
@ -2258,7 +2341,8 @@ public:
APValue Result;
if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
!HandleFunctionCall(E, Definition, This, Args, Body, Info, Result))
!HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
Info, Result))
return false;
return DerivedSuccess(CCValue(Info.Ctx, Result, CCValue::GlobalValue()), E);
@ -2703,11 +2787,12 @@ bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
if (!EvaluatePointer(PExp, Result, Info))
bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
return false;
llvm::APSInt Offset;
if (!EvaluateInteger(IExp, Offset, Info))
if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
return false;
int64_t AdditionalOffset
= Offset.isSigned() ? Offset.getSExtValue()
@ -3076,6 +3161,7 @@ bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
Result = APValue(APValue::UninitStruct(), 0,
std::distance(RD->field_begin(), RD->field_end()));
unsigned ElementNo = 0;
bool Success = true;
for (RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
// Anonymous bit-fields are not considered members of the class for
@ -3085,26 +3171,27 @@ bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
LValue Subobject = This;
if (ElementNo < E->getNumInits()) {
HandleLValueMember(Info, E->getInit(ElementNo), Subobject, *Field,
&Layout);
if (!EvaluateConstantExpression(
Result.getStructField((*Field)->getFieldIndex()),
Info, Subobject, E->getInit(ElementNo++)))
return false;
} else {
// Perform an implicit value-initialization for members beyond the end of
// the initializer list.
HandleLValueMember(Info, E, Subobject, *Field, &Layout);
ImplicitValueInitExpr VIE(Field->getType());
if (!EvaluateConstantExpression(
Result.getStructField((*Field)->getFieldIndex()),
Info, Subobject, &VIE))
bool HaveInit = ElementNo < E->getNumInits();
// FIXME: Diagnostics here should point to the end of the initializer
// list, not the start.
HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E, Subobject,
*Field, &Layout);
// Perform an implicit value-initialization for members beyond the end of
// the initializer list.
ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
if (!EvaluateConstantExpression(
Result.getStructField((*Field)->getFieldIndex()),
Info, Subobject, HaveInit ? E->getInit(ElementNo++) : &VIE)) {
if (!Info.keepEvaluatingAfterFailure())
return false;
Success = false;
}
}
return true;
return Success;
}
bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
@ -3143,7 +3230,7 @@ bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
return false;
llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
return HandleConstructorCall(E, This, Args,
return HandleConstructorCall(E->getExprLoc(), This, Args,
cast<CXXConstructorDecl>(Definition), Info,
Result);
}
@ -3454,18 +3541,18 @@ bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
for (uint64_t I = 0; I < NumElements; ++I) {
CCValue Char;
if (!HandleLValueToRValueConversion(Info, E->getInit(0),
CAT->getElementType(), LV, Char))
return false;
if (!CheckConstantExpression(Info, E->getInit(0), Char,
Result.getArrayInitializedElt(I)))
return false;
if (!HandleLValueArrayAdjustment(Info, E->getInit(0), LV,
CAT->getElementType(), LV, Char) ||
!CheckConstantExpression(Info, E->getInit(0), Char,
Result.getArrayInitializedElt(I)) ||
!HandleLValueArrayAdjustment(Info, E->getInit(0), LV,
CAT->getElementType(), 1))
return false;
}
return true;
}
bool Success = true;
Result = APValue(APValue::UninitArray(), E->getNumInits(),
CAT->getSize().getZExtValue());
LValue Subobject = This;
@ -3474,21 +3561,23 @@ bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
for (InitListExpr::const_iterator I = E->begin(), End = E->end();
I != End; ++I, ++Index) {
if (!EvaluateConstantExpression(Result.getArrayInitializedElt(Index),
Info, Subobject, cast<Expr>(*I)))
return false;
if (!HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
CAT->getElementType(), 1))
return false;
Info, Subobject, cast<Expr>(*I)) ||
!HandleLValueArrayAdjustment(Info, cast<Expr>(*I), Subobject,
CAT->getElementType(), 1)) {
if (!Info.keepEvaluatingAfterFailure())
return false;
Success = false;
}
}
if (!Result.hasArrayFiller()) return true;
if (!Result.hasArrayFiller()) return Success;
assert(E->hasArrayFiller() && "no array filler for incomplete init list");
// FIXME: The Subobject here isn't necessarily right. This rarely matters,
// but sometimes does:
// struct S { constexpr S() : p(&p) {} void *p; };
// S s[10] = {};
return EvaluateConstantExpression(Result.getArrayFiller(), Info,
Subobject, E->getArrayFiller());
Subobject, E->getArrayFiller()) && Success;
}
bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
@ -3548,7 +3637,7 @@ bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
}
llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs());
return HandleConstructorCall(E, Subobject, Args,
return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
cast<CXXConstructorDecl>(Definition),
Info, Result.getArrayFiller());
}
@ -4072,10 +4161,11 @@ bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
assert(RHSTy->isAnyComplexType() && "Invalid comparison");
ComplexValue LHS, RHS;
if (!EvaluateComplex(E->getLHS(), LHS, Info))
bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
if (!EvaluateComplex(E->getRHS(), RHS, Info))
if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
return false;
if (LHS.isComplexFloat()) {
@ -4114,10 +4204,11 @@ bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
RHSTy->isRealFloatingType()) {
APFloat RHS(0.0), LHS(0.0);
if (!EvaluateFloat(E->getRHS(), RHS, Info))
bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
if (!EvaluateFloat(E->getLHS(), LHS, Info))
if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
return false;
APFloat::cmpResult CR = LHS.compare(RHS);
@ -4145,12 +4236,13 @@ bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
LValue LHSValue;
if (!EvaluatePointer(E->getLHS(), LHSValue, Info))
LValue LHSValue, RHSValue;
bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
if (!LHSOK && Info.keepEvaluatingAfterFailure())
return false;
LValue RHSValue;
if (!EvaluatePointer(E->getRHS(), RHSValue, Info))
if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
return false;
// Reject differing bases from the normal codepath; we special-case
@ -4241,11 +4333,14 @@ bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
// The LHS of a constant expr is always evaluated and needed.
CCValue LHSVal;
if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info))
bool LHSOK = EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info);
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
if (!Visit(E->getRHS()))
if (!Visit(E->getRHS()) || !LHSOK)
return false;
CCValue &RHSVal = Result;
// Handle cases like (unsigned long)&a + 4.
@ -4860,9 +4955,10 @@ bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
APFloat RHS(0.0);
if (!EvaluateFloat(E->getLHS(), Result, Info))
bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
if (!EvaluateFloat(E->getRHS(), RHS, Info))
if (!EvaluateFloat(E->getRHS(), RHS, Info) || !LHSOK)
return false;
switch (E->getOpcode()) {
@ -5131,11 +5227,12 @@ bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
if (!Visit(E->getLHS()))
bool LHSOK = Visit(E->getLHS());
if (!LHSOK && !Info.keepEvaluatingAfterFailure())
return false;
ComplexValue RHS;
if (!EvaluateComplex(E->getRHS(), RHS, Info))
if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
return false;
assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
@ -6030,3 +6127,41 @@ bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
return IsConstExpr;
}
bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
llvm::SmallVectorImpl<
PartialDiagnosticAt> &Diags) {
// FIXME: It would be useful to check constexpr function templates, but at the
// moment the constant expression evaluator cannot cope with the non-rigorous
// ASTs which we build for dependent expressions.
if (FD->isDependentContext())
return true;
Expr::EvalStatus Status;
Status.Diag = &Diags;
EvalInfo Info(FD->getASTContext(), Status);
Info.CheckingPotentialConstantExpression = true;
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
// FIXME: Fabricate an arbitrary expression on the stack and pretend that it
// is a temporary being used as the 'this' pointer.
LValue This;
ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
This.set(&VIE, Info.CurrentCall);
APValue Scratch;
ArrayRef<const Expr*> Args;
SourceLocation Loc = FD->getLocation();
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
} else
HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
Args, FD->getBody(), Info, Scratch);
return Diags.empty();
}

View File

@ -972,6 +972,15 @@ bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
}
}
llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
<< isa<CXXConstructorDecl>(Dcl);
for (size_t I = 0, N = Diags.size(); I != N; ++I)
Diag(Diags[I].first, Diags[I].second);
return false;
}
return true;
}

View File

@ -127,3 +127,15 @@ constexpr int MultiReturn() {
// return value shall be one of those allowed in a constant expression.
//
// We implement the proposed resolution of DR1364 and ignore this bullet.
// However, we implement the spirit of the check as part of the p5 checking that
// a constexpr function must be able to produce a constant expression.
namespace DR1364 {
constexpr int f(int k) {
return k; // ok, even though lvalue-to-rvalue conversion of a function
// parameter is not allowed in a constant expression.
}
int kGlobal; // expected-note {{here}}
constexpr int f() { // expected-error {{constexpr function never produces a constant expression}}
return kGlobal; // expected-note {{read of non-const}}
}
}

View File

@ -14,6 +14,7 @@ struct NonLiteral { // expected-note 2{{no constexpr constructors}}
};
struct Literal {
constexpr Literal() {}
explicit Literal(int); // expected-note 2 {{here}}
operator int() const { return 0; }
};
@ -190,9 +191,17 @@ constexpr int f(enable_shared_from_this<int>);
// - every constructor involved in initializing non-static data members and base
// class sub-objects shall be a constexpr constructor.
//
// FIXME: Implement this as part of the 'must be able to produce a constant
// expression' rules.
struct ConstexprBaseMemberCtors : Literal {
Literal l;
constexpr ConstexprBaseMemberCtors() : Literal(), l() {} // ok
constexpr ConstexprBaseMemberCtors(char) : // expected-error {{constexpr constructor never produces a constant expression}}
Literal(0), // expected-note {{non-constexpr constructor}}
l() {}
constexpr ConstexprBaseMemberCtors(double) : Literal(), // expected-error {{constexpr constructor never produces a constant expression}}
l(0) // expected-note {{non-constexpr constructor}}
{}
};
// - every assignment-expression that is an initializer-caluse appearing
// directly or indirectly within a brace-or-equal-initializer for a non-static
@ -215,6 +224,14 @@ struct X {
// expression.
//
// We implement the proposed resolution of DR1364 and ignore this bullet.
// However, we implement the intent of this wording as part of the p5 check that
// the function must be able to produce a constant expression.
int kGlobal; // expected-note {{here}}
struct Z {
constexpr Z(int a) : n(a) {}
constexpr Z() : n(kGlobal) {} // expected-error {{constexpr constructor never produces a constant expression}} expected-note {{read of non-const}}
int n;
};
namespace StdExample {

View File

@ -1,4 +1,4 @@
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 %s
// RUN: %clang_cc1 -fsyntax-only -verify -std=c++11 -fcxx-exceptions %s
namespace StdExample {
@ -15,18 +15,61 @@ namespace N {
constexpr int c = 0;
constexpr int g4() { return N::h(); }
// FIXME: constexpr calls aren't recognized as ICEs yet, just as foldable.
#define JOIN2(a, b) a ## b
#define JOIN(a, b) JOIN2(a, b)
#define CHECK(n, m) using JOIN(A, __LINE__) = int[n]; using JOIN(A, __LINE__) = int[m];
CHECK(f(0), 0)
CHECK(f('0'), 1)
CHECK(g1(), 0)
CHECK(g2(0), 1)
CHECK(g2(1), 1)
CHECK(g3(0), 1)
CHECK(g3(1), 1)
CHECK(N::h(), 5)
CHECK(g4(), 5)
static_assert(f(0) == 0, "");
static_assert(f('0') == 1, "");
static_assert(g1() == 0, "");
static_assert(g2(0) == 1, "");
static_assert(g2(1) == 1, "");
static_assert(g3(0) == 1, "");
static_assert(g3(1) == 1, "");
static_assert(N::h() == 5, "");
static_assert(g4() == 5, "");
constexpr int f(bool b)
{ return b ? throw 0 : 0; } // ok
constexpr int f() { return throw 0, 0; } // expected-error {{constexpr function never produces a constant expression}} expected-note {{subexpression}}
struct B {
constexpr B(int x) : i(0) { }
int i;
};
int global; // expected-note {{declared here}}
struct D : B {
constexpr D() : B(global) { } // expected-error {{constexpr constructor never produces a constant expression}} expected-note {{read of non-const}}
};
}
namespace PotentialConstant {
constexpr int Comma(int n) { return // expected-error {{constexpr function never produces a constant expression}}
(void)(n * 2),
throw 0, // expected-note {{subexpression}}
0;
}
int ng; // expected-note 5{{here}}
constexpr int BinaryOp1(int n) { return n + ng; } // expected-error {{never produces}} expected-note {{read}}
constexpr int BinaryOp2(int n) { return ng + n; } // expected-error {{never produces}} expected-note {{read}}
double dg; // expected-note 2{{here}}
constexpr double BinaryOp1(double d) { return d + dg; } // expected-error {{never produces}} expected-note {{read}}
constexpr double BinaryOp2(double d) { return dg + d; } // expected-error {{never produces}} expected-note {{read}}
constexpr int Add(int a, int b, int c) { return a + b + c; }
constexpr int FunctionArgs(int a) { return Add(a, ng, a); } // expected-error {{never produces}} expected-note {{read}}
struct S { int a; int b; int c[2]; };
constexpr S InitList(int a) { return { a, ng }; }; // expected-error {{never produces}} expected-note {{read}}
constexpr S InitList2(int a) { return { a, a, { ng } }; }; // expected-error {{never produces}} expected-note {{read}}
constexpr S InitList3(int a) { return a ? (S){ a, a } : (S){ a, ng }; }; // ok
// FIXME: Check both arms of a ?: if the conditional is a potential constant
// expression with an unknown value, and diagnose if neither is constant.
constexpr S InitList4(int a) { return a ? (S){ a, ng } : (S){ a, ng }; };
}

View File

@ -190,8 +190,8 @@ namespace MemberPtr {
namespace CrossFuncLabelDiff {
// Make sure we refuse to constant-fold the variable b.
constexpr long a() { return (long)&&lbl + (0 && ({lbl: 0;})); }
void test() { static long b = (long)&&lbl - a(); lbl: return; }
constexpr long a(bool x) { return x ? 0 : (long)&&lbl + (0 && ({lbl: 0;})); }
void test() { static long b = (long)&&lbl - a(false); lbl: return; }
// CHECK: sub nsw i64 ptrtoint (i8* blockaddress(@_ZN18CrossFuncLabelDiff4testEv, {{.*}}) to i64),
// CHECK: store i64 {{.*}}, i64* @_ZZN18CrossFuncLabelDiff4testEvE1b, align 8
}

View File

@ -206,7 +206,9 @@ namespace ParameterScopes {
constexpr int b = MaybeReturnNonstaticRef(true, 0); // expected-error {{constant expression}} expected-note {{in call to 'MaybeReturnNonstaticRef(1, 0)'}}
constexpr int InternalReturnJunk(int n) {
// FIXME: We should reject this: it never produces a constant expression.
// TODO: We could reject this: it never produces a constant expression.
// However, we currently don't evaluate function calls while testing for
// potential constant expressions, for performance.
return MaybeReturnJunk(true, n); // expected-note {{in call to 'MaybeReturnJunk(1, 0)'}}
}
constexpr int n3 = InternalReturnJunk(0); // expected-error {{must be initialized by a constant expression}} expected-note {{in call to 'InternalReturnJunk(0)'}}
@ -969,10 +971,9 @@ namespace PR11595 {
struct B { B(); A& x; };
static_assert(B().x == 3, ""); // expected-error {{constant expression}} expected-note {{non-literal type 'PR11595::B' cannot be used in a constant expression}}
constexpr bool f(int k) {
constexpr bool f(int k) { // expected-error {{constexpr function never produces a constant expression}}
return B().x == k; // expected-note {{non-literal type 'PR11595::B' cannot be used in a constant expression}}
}
constexpr int n = f(1); // expected-error {{must be initialized by a constant expression}} expected-note {{in call to 'f(1)'}}
}
namespace ExprWithCleanups {