forked from OSchip/llvm-project
Remove the X86PeepholeOptimizerPass, a truly horrible old hack that is now
obsolete. yaay :) llvm-svn: 25939
This commit is contained in:
parent
c408558638
commit
23d55f2547
|
@ -38,11 +38,6 @@ FunctionPass *createX86ISelPattern(TargetMachine &TM);
|
|||
///
|
||||
FunctionPass *createX86ISelDag(TargetMachine &TM);
|
||||
|
||||
/// createX86PeepholeOptimizer - Create a pass to perform X86 specific peephole
|
||||
/// optimizations.
|
||||
///
|
||||
FunctionPass *createX86PeepholeOptimizerPass();
|
||||
|
||||
/// createX86FloatingPointStackifierPass - This function returns a pass which
|
||||
/// converts floating point register references and pseudo instructions into
|
||||
/// floating point stack references and physical instructions.
|
||||
|
|
|
@ -1,178 +0,0 @@
|
|||
//===-- X86PeepholeOpt.cpp - X86 Peephole Optimizer -----------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains an immediate shrinker for the X86. FIXME: Remove when
|
||||
// the dag isel makes this obsolete!
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "X86.h"
|
||||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||||
#include "llvm/Target/MRegisterInfo.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/ADT/STLExtras.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
Statistic<> NumPHOpts("x86-peephole",
|
||||
"Number of peephole optimization performed");
|
||||
Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
|
||||
struct PH : public MachineFunctionPass {
|
||||
virtual bool runOnMachineFunction(MachineFunction &MF);
|
||||
|
||||
bool PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I);
|
||||
|
||||
virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
|
||||
};
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
|
||||
|
||||
bool PH::runOnMachineFunction(MachineFunction &MF) {
|
||||
bool Changed = false;
|
||||
|
||||
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
|
||||
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
|
||||
if (PeepholeOptimize(*BI, I)) {
|
||||
Changed = true;
|
||||
++NumPHOpts;
|
||||
} else
|
||||
++I;
|
||||
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
|
||||
MachineBasicBlock::iterator &I) {
|
||||
assert(I != MBB.end());
|
||||
MachineBasicBlock::iterator NextI = next(I);
|
||||
|
||||
MachineInstr *MI = I;
|
||||
MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
|
||||
unsigned Size = 0;
|
||||
switch (MI->getOpcode()) {
|
||||
// A large number of X86 instructions have forms which take an 8-bit
|
||||
// immediate despite the fact that the operands are 16 or 32 bits. Because
|
||||
// this can save three bytes of code size (and icache space), we want to
|
||||
// shrink them if possible.
|
||||
case X86::IMUL16rri: case X86::IMUL32rri:
|
||||
assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
|
||||
if (MI->getOperand(2).isImmediate()) {
|
||||
int Val = MI->getOperand(2).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
|
||||
case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
unsigned R1 = MI->getOperand(1).getReg();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
case X86::ADD16ri: case X86::ADD32ri: case X86::ADC32ri:
|
||||
case X86::SUB16ri: case X86::SUB32ri:
|
||||
case X86::SBB16ri: case X86::SBB32ri:
|
||||
case X86::AND16ri: case X86::AND32ri:
|
||||
case X86::OR16ri: case X86::OR32ri:
|
||||
case X86::XOR16ri: case X86::XOR32ri:
|
||||
assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
|
||||
if (MI->getOperand(1).isImmediate()) {
|
||||
int Val = MI->getOperand(1).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::ADD16ri: Opcode = X86::ADD16ri8; break;
|
||||
case X86::ADD32ri: Opcode = X86::ADD32ri8; break;
|
||||
case X86::ADC32ri: Opcode = X86::ADC32ri8; break;
|
||||
case X86::SUB16ri: Opcode = X86::SUB16ri8; break;
|
||||
case X86::SUB32ri: Opcode = X86::SUB32ri8; break;
|
||||
case X86::SBB16ri: Opcode = X86::SBB16ri8; break;
|
||||
case X86::SBB32ri: Opcode = X86::SBB32ri8; break;
|
||||
case X86::AND16ri: Opcode = X86::AND16ri8; break;
|
||||
case X86::AND32ri: Opcode = X86::AND32ri8; break;
|
||||
case X86::OR16ri: Opcode = X86::OR16ri8; break;
|
||||
case X86::OR32ri: Opcode = X86::OR32ri8; break;
|
||||
case X86::XOR16ri: Opcode = X86::XOR16ri8; break;
|
||||
case X86::XOR32ri: Opcode = X86::XOR32ri8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
|
||||
.addZImm((char)Val));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
|
||||
case X86::ADD16mi: case X86::ADD32mi: case X86::ADC32mi:
|
||||
case X86::SUB16mi: case X86::SUB32mi:
|
||||
case X86::SBB16mi: case X86::SBB32mi:
|
||||
case X86::AND16mi: case X86::AND32mi:
|
||||
case X86::OR16mi: case X86::OR32mi:
|
||||
case X86::XOR16mi: case X86::XOR32mi:
|
||||
assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
|
||||
if (MI->getOperand(4).isImmediate()) {
|
||||
int Val = MI->getOperand(4).getImmedValue();
|
||||
// If the value is the same when signed extended from 8 bits...
|
||||
if (Val == (signed int)(signed char)Val) {
|
||||
unsigned Opcode;
|
||||
switch (MI->getOpcode()) {
|
||||
default: assert(0 && "Unknown opcode value!");
|
||||
case X86::ADD16mi: Opcode = X86::ADD16mi8; break;
|
||||
case X86::ADD32mi: Opcode = X86::ADD32mi8; break;
|
||||
case X86::ADC32mi: Opcode = X86::ADC32mi8; break;
|
||||
case X86::SUB16mi: Opcode = X86::SUB16mi8; break;
|
||||
case X86::SUB32mi: Opcode = X86::SUB32mi8; break;
|
||||
case X86::SBB16mi: Opcode = X86::SBB16mi8; break;
|
||||
case X86::SBB32mi: Opcode = X86::SBB32mi8; break;
|
||||
case X86::AND16mi: Opcode = X86::AND16mi8; break;
|
||||
case X86::AND32mi: Opcode = X86::AND32mi8; break;
|
||||
case X86::OR16mi: Opcode = X86::OR16mi8; break;
|
||||
case X86::OR32mi: Opcode = X86::OR32mi8; break;
|
||||
case X86::XOR16mi: Opcode = X86::XOR16mi8; break;
|
||||
case X86::XOR32mi: Opcode = X86::XOR32mi8; break;
|
||||
}
|
||||
unsigned R0 = MI->getOperand(0).getReg();
|
||||
unsigned Scale = MI->getOperand(1).getImmedValue();
|
||||
unsigned R1 = MI->getOperand(2).getReg();
|
||||
if (MI->getOperand(3).isImmediate()) {
|
||||
unsigned Offset = MI->getOperand(3).getImmedValue();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
|
||||
addReg(R1).addSImm(Offset).addZImm((char)Val));
|
||||
} else if (MI->getOperand(3).isGlobalAddress()) {
|
||||
GlobalValue *GA = MI->getOperand(3).getGlobal();
|
||||
int Offset = MI->getOperand(3).getOffset();
|
||||
I = MBB.insert(MBB.erase(I),
|
||||
BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
|
||||
addReg(R1).addGlobalAddress(GA, false, Offset).
|
||||
addZImm((char)Val));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
|
@ -129,8 +129,6 @@ bool X86TargetMachine::addPassesToEmitFile(PassManager &PM, std::ostream &Out,
|
|||
// Insert prolog/epilog code. Eliminate abstract frame index references...
|
||||
PM.add(createPrologEpilogCodeInserter());
|
||||
|
||||
PM.add(createX86PeepholeOptimizerPass());
|
||||
|
||||
if (PrintMachineCode) // Print the register-allocated code
|
||||
PM.add(createX86CodePrinterPass(std::cerr, *this));
|
||||
|
||||
|
@ -198,8 +196,6 @@ void X86JITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
|
|||
// Insert prolog/epilog code. Eliminate abstract frame index references...
|
||||
PM.add(createPrologEpilogCodeInserter());
|
||||
|
||||
PM.add(createX86PeepholeOptimizerPass());
|
||||
|
||||
if (PrintMachineCode) // Print the register-allocated code
|
||||
PM.add(createX86CodePrinterPass(std::cerr, TM));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue