[mlir][spirv] Fix runtime array stride when emulating bitwidth

The stride should be calculated with the converted array element
type, not the original input type.

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D100337
This commit is contained in:
Lei Zhang 2021-04-12 17:08:22 -04:00
parent ed1734931a
commit 23b8264b52
2 changed files with 69 additions and 9 deletions

View File

@ -442,8 +442,16 @@ static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
return nullptr;
}
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
if (!type.hasStaticShape()) {
auto arrayType = spirv::RuntimeArrayType::get(arrayElemType, *elementSize);
auto arrayType =
spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
// Wrap in a struct to satisfy Vulkan interface requirements.
auto structType = spirv::StructType::get(arrayType, 0);
return spirv::PointerType::get(structType, *storageClass);
@ -458,12 +466,6 @@ static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
auto arrayElemCount = *memrefSize / *elementSize;
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
if (!arrayElemSize) {
LLVM_DEBUG(llvm::dbgs()
<< type << " illegal: cannot deduce converted element size\n");
return nullptr;
}
auto arrayType =
spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);

View File

@ -296,6 +296,8 @@ module attributes {
// An i1 is store in 8-bit, so 5xi1 has 40 bits, which is stored in 2xi32.
// CHECK-LABEL: spv.func @memref_1bit_type
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.array<2 x i32, stride=4> [0])>, StorageBuffer>
// NOEMU-LABEL: func @memref_1bit_type
// NOEMU-SAME: memref<5xi1>
func @memref_1bit_type(%arg0: memref<5xi1>) { return }
// CHECK-LABEL: spv.func @memref_8bit_StorageBuffer
@ -509,12 +511,68 @@ module attributes {
// CHECK-SAME: memref<*xi32>
func @unranked_memref(%arg0: memref<*xi32>) { return }
// Check that dynamic dims on i1 are not supported.
// CHECK-LABEL: func @memref_1bit_type
// CHECK-SAME: memref<?xi1>
func @memref_1bit_type(%arg0: memref<?xi1>) { return }
// CHECK-LABEL: func @dynamic_dim_memref
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<i32, stride=4> [0])>, StorageBuffer>
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<f32, stride=4> [0])>, StorageBuffer>
func @dynamic_dim_memref(%arg0: memref<8x?xi32>,
%arg1: memref<?x?xf32>)
{ return }
%arg1: memref<?x?xf32>) { return }
// Check that using non-32-bit scalar types in interface storage classes
// requires special capability and extension: convert them to 32-bit if not
// satisfied.
// CHECK-LABEL: spv.func @memref_8bit_StorageBuffer
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<i32, stride=4> [0])>, StorageBuffer>
// NOEMU-LABEL: func @memref_8bit_StorageBuffer
// NOEMU-SAME: memref<?xi8>
func @memref_8bit_StorageBuffer(%arg0: memref<?xi8, 0>) { return }
// CHECK-LABEL: spv.func @memref_8bit_Uniform
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<si32, stride=4> [0])>, Uniform>
// NOEMU-LABEL: func @memref_8bit_Uniform
// NOEMU-SAME: memref<?xsi8, 4>
func @memref_8bit_Uniform(%arg0: memref<?xsi8, 4>) { return }
// CHECK-LABEL: spv.func @memref_8bit_PushConstant
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<ui32, stride=4> [0])>, PushConstant>
// NOEMU-LABEL: func @memref_8bit_PushConstant
// NOEMU-SAME: memref<?xui8, 7>
func @memref_8bit_PushConstant(%arg0: memref<?xui8, 7>) { return }
// CHECK-LABEL: spv.func @memref_16bit_StorageBuffer
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<i32, stride=4> [0])>, StorageBuffer>
// NOEMU-LABEL: func @memref_16bit_StorageBuffer
// NOEMU-SAME: memref<?xi16>
func @memref_16bit_StorageBuffer(%arg0: memref<?xi16, 0>) { return }
// CHECK-LABEL: spv.func @memref_16bit_Uniform
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<si32, stride=4> [0])>, Uniform>
// NOEMU-LABEL: func @memref_16bit_Uniform
// NOEMU-SAME: memref<?xsi16, 4>
func @memref_16bit_Uniform(%arg0: memref<?xsi16, 4>) { return }
// CHECK-LABEL: spv.func @memref_16bit_PushConstant
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<ui32, stride=4> [0])>, PushConstant>
// NOEMU-LABEL: func @memref_16bit_PushConstant
// NOEMU-SAME: memref<?xui16, 7>
func @memref_16bit_PushConstant(%arg0: memref<?xui16, 7>) { return }
// CHECK-LABEL: spv.func @memref_16bit_Input
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<f32, stride=4> [0])>, Input>
// NOEMU-LABEL: func @memref_16bit_Input
// NOEMU-SAME: memref<?xf16, 9>
func @memref_16bit_Input(%arg3: memref<?xf16, 9>) { return }
// CHECK-LABEL: spv.func @memref_16bit_Output
// CHECK-SAME: !spv.ptr<!spv.struct<(!spv.rtarray<f32, stride=4> [0])>, Output>
// NOEMU-LABEL: func @memref_16bit_Output
// NOEMU-SAME: memref<?xf16, 10>
func @memref_16bit_Output(%arg4: memref<?xf16, 10>) { return }
} // end module