[mlir][linalg][bufferize] Print results of FuncOp read/write analysis

Print more information with test-analysis-only.

Differential Revision: https://reviews.llvm.org/D119118
This commit is contained in:
Matthias Springer 2022-02-09 20:44:02 +09:00
parent 00b2a9c9da
commit 22a1973dbe
2 changed files with 54 additions and 10 deletions

View File

@ -239,6 +239,22 @@ static bool isValueWritten(Value value, const BufferizationState &state,
return isWritten;
}
static void annotateFuncArgAccess(FuncOp funcOp, BlockArgument bbArg,
bool isRead, bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. If this
/// PostAnalysisStepFn is run on a function with unknown ops, it will
/// conservatively assume that such ops bufferize to a read + write.
@ -263,9 +279,13 @@ funcOpBbArgReadWriteAnalysis(Operation *op, BufferizationState &state,
for (BlockArgument bbArg : funcOp.getArguments()) {
if (!bbArg.getType().isa<TensorType>())
continue;
if (state.isValueRead(bbArg))
bool isRead = state.isValueRead(bbArg);
bool isWritten = isValueWritten(bbArg, state, aliasInfo);
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
if (isRead)
moduleState.readBbArgs.insert(bbArg);
if (isValueWritten(bbArg, state, aliasInfo))
if (isWritten)
moduleState.writtenBbArgs.insert(bbArg);
}

View File

@ -11,9 +11,11 @@
// -----
// CHECK-LABEL: func @extract_slice_fun
// CHECK-LABEL: func @extract_slice_fun(
func @extract_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "read"
%B : tensor<?xf32> {linalg.inplaceable = true})
// CHECK-SAME: bufferization.access = "read"
-> (tensor<4xf32>, tensor<8xf32>)
{
// tensor.extract_slice is not used in a write, it is not compelled to
@ -33,10 +35,13 @@ func @extract_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = false},
// -----
// CHECK-LABEL: func @insert_slice_fun
// CHECK-LABEL: func @insert_slice_fun(
func @insert_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "read"
%B : tensor<?xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read-write"
%C : tensor<4xf32> {linalg.inplaceable = false})
// CHECK-SAME: bufferization.access = "read"
-> (tensor<?xf32>, tensor<?xf32>)
{
// must bufferize out of place.
@ -56,9 +61,11 @@ func @insert_slice_fun(%A : tensor<?xf32> {linalg.inplaceable = false},
// -----
// CHECK-LABEL: func @conflict_on_B
// CHECK-LABEL: func @conflict_on_B(
func @conflict_on_B(%A : tensor<4x4xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read"
%B : tensor<4x4xf32> {linalg.inplaceable = true})
// CHECK-SAME: bufferization.access = "read-write"
-> (tensor<4x4xf32>, tensor<4x4xf32>, tensor<4x4xf32>)
{
// matmul output operand interferes with input operand.
@ -93,10 +100,12 @@ func @conflict_on_B(%A : tensor<4x4xf32> {linalg.inplaceable = true},
// -----
// CHECK-LABEL: func @extract_slice_extract_slice
// CHECK-LABEL: func @extract_slice_extract_slice(
func @extract_slice_extract_slice(
%A : tensor<?xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read"
%B : tensor<?xf32> {linalg.inplaceable = false})
// CHECK-SAME: bufferization.access = "read"
-> (tensor<2xf32>, tensor<2xf32>)
{
// tensor.extract_slice is not used in a write, it is not compelled to
@ -120,14 +129,20 @@ func @extract_slice_extract_slice(
// -----
// CHECK-LABEL: func @insert_slice_insert_slice
// CHECK-LABEL: func @insert_slice_insert_slice(
func @insert_slice_insert_slice(
%A : tensor<?xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read-write"
%A2 : tensor<4xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read-write"
%A3 : tensor<2xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read"
%B : tensor<?xf32> {linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "read"
%B2 : tensor<4xf32> {linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "read"
%B3 : tensor<2xf32> {linalg.inplaceable = false})
// CHECK-SAME: bufferization.access = "read"
-> (tensor<?xf32>, tensor<?xf32>)
{
// CHECK: {__inplace_operands_attr__ = ["true", "true"]}
@ -888,12 +903,16 @@ builtin.func @matmul_on_tensors(
// prioritizing the tensor.insert_slice ops.
//===----------------------------------------------------------------------===//
// CHECK-LABEL: func @insert_slice_chain(
func @insert_slice_chain(
%v1: vector<32x90xf32>,
%v2: vector<30x90xf32>,
%arg0: tensor<62x126xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "none"
%arg1: tensor<126x90xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = false},
// CHECK-SAME: bufferization.access = "none"
%arg2: tensor<62x90xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = true})
// CHECK-SAME: bufferization.access = "write"
-> tensor<62x90xf32> attributes {passthrough = [["target-cpu", "skylake-avx512"], ["prefer-vector-width", "512"]]}
{
%c0 = arith.constant 0 : index
@ -968,10 +987,13 @@ func @ip(%t: tensor<10x20xf32> {linalg.inplaceable = true},
iterator_types = ["parallel"]
}
// CHECK-LABEL: func @linalg_op_same_out_tensors
// CHECK-LABEL: func @linalg_op_same_out_tensors(
func @linalg_op_same_out_tensors(
%t1: tensor<?xf32> {linalg.inplaceable = true},
%t2: tensor<?xf32> {linalg.inplaceable = true}) -> (tensor<?xf32>, tensor<?xf32>){
// CHECK-SAME: bufferization.access = "read-write"
%t2: tensor<?xf32> {linalg.inplaceable = true})
// CHECK-SAME: bufferization.access = "write"
-> (tensor<?xf32>, tensor<?xf32>){
// CHECK: linalg.generic
// CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]
@ -999,10 +1021,12 @@ func @linalg_op_same_out_tensors(
iterator_types = ["parallel"]
}
// CHECK-LABEL: func @linalg_op_same_out_tensors_2
// CHECK-LABEL: func @linalg_op_same_out_tensors_2(
func @linalg_op_same_out_tensors_2(
%t1: tensor<?xf32> {linalg.inplaceable = true},
// CHECK-SAME: bufferization.access = "read-write"
%t2: tensor<?xf32> {linalg.inplaceable = true})
// CHECK-SAME: bufferization.access = "write"
-> (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>){
// CHECK: linalg.generic