[IPSCCP] Move common functions to ValueLatticeUtils (NFC)

This patch moves some common utility functions out of IPSCCP and makes them
available globally. The functions determine if interprocedural data-flow
analyses can propagate information through function returns, arguments, and
global variables.

Differential Revision: https://reviews.llvm.org/D37638

llvm-svn: 315719
This commit is contained in:
Matthew Simpson 2017-10-13 17:53:44 +00:00
parent c419c9f640
commit 2284937bbc
4 changed files with 113 additions and 62 deletions

View File

@ -0,0 +1,41 @@
//===-- ValueLatticeUtils.h - Utils for solving lattices --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares common functions useful for performing data-flow analyses
// that propagate values across function boundaries.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_VALUELATTICEUTILS_H
#define LLVM_ANALYSIS_VALUELATTICEUTILS_H
namespace llvm {
class Function;
class GlobalVariable;
/// Determine if the values of the given function's arguments can be tracked
/// interprocedurally. The value of an argument can be tracked if the function
/// has local linkage and its address is not taken.
bool canTrackArgumentsInterprocedurally(Function *F);
/// Determine if the values of the given function's returns can be tracked
/// interprocedurally. Return values can be tracked if the function has an
/// exact definition and it doesn't have the "naked" attribute. Naked functions
/// may contain assembly code that returns untrackable values.
bool canTrackReturnsInterprocedurally(Function *F);
/// Determine if the value maintained in the given global variable can be
/// tracked interprocedurally. A value can be tracked if the global variable
/// has local linkage and is only used by non-volatile loads and stores.
bool canTrackGlobalVariableInterprocedurally(GlobalVariable *GV);
} // end namespace llvm
#endif // LLVM_ANALYSIS_VALUELATTICEUTILS_H

View File

@ -81,6 +81,7 @@ add_llvm_library(LLVMAnalysis
TypeMetadataUtils.cpp
ScopedNoAliasAA.cpp
ValueLattice.cpp
ValueLatticeUtils.cpp
ValueTracking.cpp
VectorUtils.cpp

View File

@ -0,0 +1,44 @@
//===-- ValueLatticeUtils.cpp - Utils for solving lattices ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements common functions useful for performing data-flow
// analyses that propagate values across function boundaries.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
using namespace llvm;
bool llvm::canTrackArgumentsInterprocedurally(Function *F) {
return F->hasLocalLinkage() && !F->hasAddressTaken();
}
bool llvm::canTrackReturnsInterprocedurally(Function *F) {
return F->hasExactDefinition() && !F->hasFnAttribute(Attribute::Naked);
}
bool llvm::canTrackGlobalVariableInterprocedurally(GlobalVariable *GV) {
if (GV->isConstant() || !GV->hasLocalLinkage() ||
!GV->hasDefinitiveInitializer())
return false;
return !any_of(GV->users(), [&](User *U) {
if (auto *Store = dyn_cast<StoreInst>(U)) {
if (Store->getValueOperand() == GV || Store->isVolatile())
return true;
} else if (auto *Load = dyn_cast<LoadInst>(U)) {
if (Load->isVolatile())
return true;
} else {
return true;
}
return false;
});
}

View File

@ -27,6 +27,7 @@
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@ -263,6 +264,12 @@ public:
TrackingIncomingArguments.insert(F);
}
/// Returns true if the given function is in the solver's set of
/// argument-tracked functions.
bool isArgumentTrackedFunction(Function *F) {
return TrackingIncomingArguments.count(F);
}
/// Solve - Solve for constants and executable blocks.
///
void Solve();
@ -1699,38 +1706,11 @@ INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
// createSCCPPass - This is the public interface to this file.
FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
static bool AddressIsTaken(const GlobalValue *GV) {
// Delete any dead constantexpr klingons.
GV->removeDeadConstantUsers();
for (const Use &U : GV->uses()) {
const User *UR = U.getUser();
if (const auto *SI = dyn_cast<StoreInst>(UR)) {
if (SI->getOperand(0) == GV || SI->isVolatile())
return true; // Storing addr of GV.
} else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
// Make sure we are calling the function, not passing the address.
ImmutableCallSite CS(cast<Instruction>(UR));
if (!CS.isCallee(&U))
return true;
} else if (const auto *LI = dyn_cast<LoadInst>(UR)) {
if (LI->isVolatile())
return true;
} else if (isa<BlockAddress>(UR)) {
// blockaddress doesn't take the address of the function, it takes addr
// of label.
} else {
return true;
}
}
return false;
}
static void findReturnsToZap(Function &F,
SmallPtrSet<Function *, 32> &AddressTakenFunctions,
SmallVector<ReturnInst *, 8> &ReturnsToZap) {
SmallVector<ReturnInst *, 8> &ReturnsToZap,
SCCPSolver &Solver) {
// We can only do this if we know that nothing else can call the function.
if (!F.hasLocalLinkage() || AddressTakenFunctions.count(&F))
if (!Solver.isArgumentTrackedFunction(&F))
return;
for (BasicBlock &BB : F)
@ -1743,13 +1723,6 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SCCPSolver Solver(DL, TLI);
// AddressTakenFunctions - This set keeps track of the address-taken functions
// that are in the input. As IPSCCP runs through and simplifies code,
// functions that were address taken can end up losing their
// address-taken-ness. Because of this, we keep track of their addresses from
// the first pass so we can use them for the later simplification pass.
SmallPtrSet<Function*, 32> AddressTakenFunctions;
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
//
@ -1757,25 +1730,16 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
if (F.isDeclaration())
continue;
// If this is an exact definition of this function, then we can propagate
// information about its result into callsites of it.
// Don't touch naked functions. They may contain asm returning a
// value we don't see, so we may end up interprocedurally propagating
// the return value incorrectly.
if (F.hasExactDefinition() && !F.hasFnAttribute(Attribute::Naked))
// Determine if we can track the function's return values. If so, add the
// function to the solver's set of return-tracked functions.
if (canTrackReturnsInterprocedurally(&F))
Solver.AddTrackedFunction(&F);
// If this function only has direct calls that we can see, we can track its
// arguments and return value aggressively, and can assume it is not called
// unless we see evidence to the contrary.
if (F.hasLocalLinkage()) {
if (F.hasAddressTaken()) {
AddressTakenFunctions.insert(&F);
}
else {
Solver.AddArgumentTrackedFunction(&F);
continue;
}
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
Solver.AddArgumentTrackedFunction(&F);
continue;
}
// Assume the function is called.
@ -1786,13 +1750,14 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
Solver.markOverdefined(&AI);
}
// Loop over global variables. We inform the solver about any internal global
// variables that do not have their 'addresses taken'. If they don't have
// their addresses taken, we can propagate constants through them.
for (GlobalVariable &G : M.globals())
if (!G.isConstant() && G.hasLocalLinkage() &&
G.hasDefinitiveInitializer() && !AddressIsTaken(&G))
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.TrackValueOfGlobalVariable(&G);
}
// Solve for constants.
bool ResolvedUndefs = true;
@ -1897,7 +1862,7 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
Function *F = I.first;
if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
continue;
findReturnsToZap(*F, AddressTakenFunctions, ReturnsToZap);
findReturnsToZap(*F, ReturnsToZap, Solver);
}
for (const auto &F : Solver.getMRVFunctionsTracked()) {
@ -1905,7 +1870,7 @@ static bool runIPSCCP(Module &M, const DataLayout &DL,
"The return type should be a struct");
StructType *STy = cast<StructType>(F->getReturnType());
if (Solver.isStructLatticeConstant(F, STy))
findReturnsToZap(*F, AddressTakenFunctions, ReturnsToZap);
findReturnsToZap(*F, ReturnsToZap, Solver);
}
// Zap all returns which we've identified as zap to change.