Enable exception handling int JIT

llvm-svn: 47079
This commit is contained in:
Nicolas Geoffray 2008-02-13 18:39:37 +00:00
parent 2aea794226
commit 21ad494f67
13 changed files with 961 additions and 8 deletions

View File

@ -26,6 +26,7 @@ class MachineBasicBlock;
class MachineConstantPool; class MachineConstantPool;
class MachineJumpTableInfo; class MachineJumpTableInfo;
class MachineFunction; class MachineFunction;
class MachineModuleInfo;
class MachineRelocation; class MachineRelocation;
class Value; class Value;
class GlobalValue; class GlobalValue;
@ -136,6 +137,72 @@ public:
CurBufferPtr = BufferEnd; CurBufferPtr = BufferEnd;
} }
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the output stream.
void emitULEB128Bytes(unsigned Value) {
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
if (Value) Byte |= 0x80;
emitByte(Byte);
} while (Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the output stream.
void emitSLEB128Bytes(int Value) {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
emitByte(Byte);
} while (IsMore);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the output stream.
void emitString(const std::string &String) {
for (unsigned i = 0, N = String.size(); i < N; ++i) {
unsigned char C = String[i];
emitByte(C);
}
emitByte(0);
}
/// emitInt32 - Emit a int32 directive.
void emitInt32(int Value) {
if (CurBufferPtr+4 <= BufferEnd) {
*((uint32_t*)CurBufferPtr) = Value;
CurBufferPtr += 4;
} else {
CurBufferPtr = BufferEnd;
}
}
/// emitInt64 - Emit a int64 directive.
void emitInt64(uint64_t Value) {
if (CurBufferPtr+8 <= BufferEnd) {
*((uint64_t*)CurBufferPtr) = Value;
CurBufferPtr += 8;
} else {
CurBufferPtr = BufferEnd;
}
}
/// emitAt - Emit Value in Addr
void emitAt(uintptr_t *Addr, uintptr_t Value) {
if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
(*Addr) = Value;
}
/// emitLabel - Emits a label
virtual void emitLabel(uint64_t LabelID) = 0;
/// allocateSpace - Allocate a block of space in the current output buffer, /// allocateSpace - Allocate a block of space in the current output buffer,
/// returning null (and setting conditions to indicate buffer overflow) on /// returning null (and setting conditions to indicate buffer overflow) on
/// failure. Alignment is the alignment in bytes of the buffer desired. /// failure. Alignment is the alignment in bytes of the buffer desired.
@ -194,6 +261,15 @@ public:
/// emitted. /// emitted.
/// ///
virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0; virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
/// getLabelAddress - Return the address of the specified LabelID, only usable
/// after the LabelID has been emitted.
///
virtual intptr_t getLabelAddress(uint64_t LabelID) const = 0;
/// Specifies the MachineModuleInfo object. This is used for exception handling
/// purposes.
virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
}; };
} // End llvm namespace } // End llvm namespace

View File

@ -85,6 +85,11 @@ protected:
/// pointer is invoked to create it. If this returns null, the JIT will abort. /// pointer is invoked to create it. If this returns null, the JIT will abort.
void* (*LazyFunctionCreator)(const std::string &); void* (*LazyFunctionCreator)(const std::string &);
/// ExceptionTableRegister - If Exception Handling is set, the JIT will
/// register dwarf tables with this function
typedef void (*EERegisterFn)(void*);
static EERegisterFn ExceptionTableRegister;
public: public:
/// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and /// lock - This lock is protects the ExecutionEngine, JIT, JITResolver and
/// JITEmitter classes. It must be held while changing the internal state of /// JITEmitter classes. It must be held while changing the internal state of
@ -247,6 +252,19 @@ public:
LazyFunctionCreator = P; LazyFunctionCreator = P;
} }
/// InstallExceptionTableRegister - The JIT will use the given function
/// to register the exception tables it generates.
static void InstallExceptionTableRegister(void (*F)(void*)) {
ExceptionTableRegister = F;
}
/// RegisterTable - Registers the given pointer as an exception table. It uses
/// the ExceptionTableRegister function.
static void RegisterTable(void* res) {
if (ExceptionTableRegister)
ExceptionTableRegister(res);
}
protected: protected:
explicit ExecutionEngine(ModuleProvider *P); explicit ExecutionEngine(ModuleProvider *P);

View File

@ -89,6 +89,17 @@ public:
/// deallocateMemForFunction - Free JIT memory for the specified function. /// deallocateMemForFunction - Free JIT memory for the specified function.
/// This is never called when the JIT is currently emitting a function. /// This is never called when the JIT is currently emitting a function.
virtual void deallocateMemForFunction(const Function *F) = 0; virtual void deallocateMemForFunction(const Function *F) = 0;
/// startExceptionTable - When we finished JITing the function, if exception
/// handling is set, we emit the exception table.
virtual unsigned char* startExceptionTable(const Function* F,
uintptr_t &ActualSize) = 0;
/// endExceptionTable - This method is called when the JIT is done emitting
/// the exception table.
virtual void endExceptionTable(const Function *F, unsigned char *TableStart,
unsigned char *TableEnd,
unsigned char* FrameRegister) = 0;
}; };
} // end namespace llvm. } // end namespace llvm.

View File

@ -98,6 +98,21 @@ namespace llvm {
return 0; return 0;
} }
virtual intptr_t getLabelAddress(uint64_t Label) const {
assert(0 && "Label address not implementated yet!");
abort();
return 0;
}
virtual void emitLabel(uint64_t LabelID) {
assert(0 && "emit Label not implementated yet!");
abort();
}
virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) { }
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE! /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) { void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) {
assert(0 && "JIT specific function called!"); assert(0 && "JIT specific function called!");

View File

@ -186,7 +186,7 @@ bool LLVMTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
PM.add(createGCLoweringPass()); PM.add(createGCLoweringPass());
// FIXME: Implement the invoke/unwind instructions! if (!ExceptionHandling)
PM.add(createLowerInvokePass(getTargetLowering())); PM.add(createLowerInvokePass(getTargetLowering()));
// Make sure that no unreachable blocks are instruction selected. // Make sure that no unreachable blocks are instruction selected.

View File

@ -125,6 +125,20 @@ namespace llvm {
return MBBLocations[MBB->getNumber()]; return MBBLocations[MBB->getNumber()];
} }
virtual intptr_t getLabelAddress(uint64_t Label) const {
assert(0 && "get Label not implemented");
abort();
return 0;
}
virtual void emitLabel(uint64_t LabelID) {
assert(0 && "emit Label not implemented");
abort();
}
virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) { }
/// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE! /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE!
virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) { virtual void startFunctionStub(unsigned StubSize, unsigned Alignment = 1) {
assert(0 && "JIT specific function called!"); assert(0 && "JIT specific function called!");

View File

@ -34,6 +34,8 @@ STATISTIC(NumGlobals , "Number of global vars initialized");
ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0;
ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0;
ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) { ExecutionEngine::ExecutionEngine(ModuleProvider *P) : LazyFunctionCreator(0) {
LazyCompilationDisabled = false; LazyCompilationDisabled = false;

View File

@ -0,0 +1,636 @@
//===----- JITDwarfEmitter.cpp - Write dwarf tables into memory -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a JITDwarfEmitter object that is used by the JIT to
// write dwarf tables to memory.
//
//===----------------------------------------------------------------------===//
#include "JIT.h"
#include "JITDwarfEmitter.h"
#include "llvm/Function.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLocation.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
JITDwarfEmitter::JITDwarfEmitter(JIT& theJit) : Jit(theJit) {}
unsigned char* JITDwarfEmitter::EmitDwarfTable(MachineFunction& F,
MachineCodeEmitter& mce,
unsigned char* StartFunction,
unsigned char* EndFunction) {
const TargetMachine& TM = F.getTarget();
TD = TM.getTargetData();
needsIndirectEncoding = TM.getTargetAsmInfo()->getNeedsIndirectEncoding();
stackGrowthDirection = TM.getFrameInfo()->getStackGrowthDirection();
RI = TM.getRegisterInfo();
MCE = &mce;
unsigned char* ExceptionTable = EmitExceptionTable(&F, StartFunction,
EndFunction);
unsigned char* Result = 0;
unsigned char* EHFramePtr = 0;
const std::vector<Function *> Personalities = MMI->getPersonalities();
EHFramePtr = EmitCommonEHFrame(Personalities[MMI->getPersonalityIndex()]);
Result = EmitEHFrame(Personalities[MMI->getPersonalityIndex()], EHFramePtr,
StartFunction, EndFunction, ExceptionTable);
return Result;
}
void JITDwarfEmitter::EmitFrameMoves(intptr_t BaseLabelPtr,
const std::vector<MachineMove> &Moves) {
unsigned PointerSize = TD->getPointerSize();
int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
PointerSize : -PointerSize;
bool IsLocal = BaseLabelPtr;
for (unsigned i = 0, N = Moves.size(); i < N; ++i) {
const MachineMove &Move = Moves[i];
unsigned LabelID = Move.getLabelID();
if (LabelID) {
LabelID = MMI->MappedLabel(LabelID);
// Throw out move if the label is invalid.
if (!LabelID) continue;
}
intptr_t LabelPtr = 0;
if (LabelID) LabelPtr = MCE->getLabelAddress(LabelID);
const MachineLocation &Dst = Move.getDestination();
const MachineLocation &Src = Move.getSource();
// Advance row if new location.
if (BaseLabelPtr && LabelID && (BaseLabelPtr != LabelPtr || !IsLocal)) {
MCE->emitByte(dwarf::DW_CFA_advance_loc4);
if (PointerSize == 8) {
MCE->emitInt64(LabelPtr - BaseLabelPtr);
} else {
MCE->emitInt32(LabelPtr - BaseLabelPtr);
}
BaseLabelPtr = LabelPtr;
IsLocal = true;
}
// If advancing cfa.
if (Dst.isRegister() && Dst.getRegister() == MachineLocation::VirtualFP) {
if (!Src.isRegister()) {
if (Src.getRegister() == MachineLocation::VirtualFP) {
MCE->emitByte(dwarf::DW_CFA_def_cfa_offset);
} else {
MCE->emitByte(dwarf::DW_CFA_def_cfa);
MCE->emitULEB128Bytes(RI->getDwarfRegNum(Src.getRegister(), true));
}
int Offset = -Src.getOffset();
MCE->emitULEB128Bytes(Offset);
} else {
assert(0 && "Machine move no supported yet.");
}
} else if (Src.isRegister() &&
Src.getRegister() == MachineLocation::VirtualFP) {
if (Dst.isRegister()) {
MCE->emitByte(dwarf::DW_CFA_def_cfa_register);
MCE->emitULEB128Bytes(RI->getDwarfRegNum(Dst.getRegister(), true));
} else {
assert(0 && "Machine move no supported yet.");
}
} else {
unsigned Reg = RI->getDwarfRegNum(Src.getRegister(), true);
int Offset = Dst.getOffset() / stackGrowth;
if (Offset < 0) {
MCE->emitByte(dwarf::DW_CFA_offset_extended_sf);
MCE->emitULEB128Bytes(Reg);
MCE->emitSLEB128Bytes(Offset);
} else if (Reg < 64) {
MCE->emitByte(dwarf::DW_CFA_offset + Reg);
MCE->emitULEB128Bytes(Offset);
} else {
MCE->emitByte(dwarf::DW_CFA_offset_extended);
MCE->emitULEB128Bytes(Reg);
MCE->emitULEB128Bytes(Offset);
}
}
}
}
/// SharedTypeIds - How many leading type ids two landing pads have in common.
static unsigned SharedTypeIds(const LandingPadInfo *L,
const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
unsigned Count = 0;
for (; Count != MinSize; ++Count)
if (LIds[Count] != RIds[Count])
return Count;
return Count;
}
/// PadLT - Order landing pads lexicographically by type id.
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
unsigned LSize = LIds.size(), RSize = RIds.size();
unsigned MinSize = LSize < RSize ? LSize : RSize;
for (unsigned i = 0; i != MinSize; ++i)
if (LIds[i] != RIds[i])
return LIds[i] < RIds[i];
return LSize < RSize;
}
struct KeyInfo {
static inline unsigned getEmptyKey() { return -1U; }
static inline unsigned getTombstoneKey() { return -2U; }
static unsigned getHashValue(const unsigned &Key) { return Key; }
static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
static bool isPod() { return true; }
};
/// ActionEntry - Structure describing an entry in the actions table.
struct ActionEntry {
int ValueForTypeID; // The value to write - may not be equal to the type id.
int NextAction;
struct ActionEntry *Previous;
};
/// PadRange - Structure holding a try-range and the associated landing pad.
struct PadRange {
// The index of the landing pad.
unsigned PadIndex;
// The index of the begin and end labels in the landing pad's label lists.
unsigned RangeIndex;
};
typedef DenseMap<unsigned, PadRange, KeyInfo> RangeMapType;
/// CallSiteEntry - Structure describing an entry in the call-site table.
struct CallSiteEntry {
unsigned BeginLabel; // zero indicates the start of the function.
unsigned EndLabel; // zero indicates the end of the function.
unsigned PadLabel; // zero indicates that there is no landing pad.
unsigned Action;
};
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF,
unsigned char* StartFunction,
unsigned char* EndFunction) {
// Map all labels and get rid of any dead landing pads.
MMI->TidyLandingPads();
const std::vector<GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
if (PadInfos.empty()) return 0;
// Sort the landing pads in order of their type ids. This is used to fold
// duplicate actions.
SmallVector<const LandingPadInfo *, 64> LandingPads;
LandingPads.reserve(PadInfos.size());
for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
LandingPads.push_back(&PadInfos[i]);
std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
// Negative type ids index into FilterIds, positive type ids index into
// TypeInfos. The value written for a positive type id is just the type
// id itself. For a negative type id, however, the value written is the
// (negative) byte offset of the corresponding FilterIds entry. The byte
// offset is usually equal to the type id, because the FilterIds entries
// are written using a variable width encoding which outputs one byte per
// entry as long as the value written is not too large, but can differ.
// This kind of complication does not occur for positive type ids because
// type infos are output using a fixed width encoding.
// FilterOffsets[i] holds the byte offset corresponding to FilterIds[i].
SmallVector<int, 16> FilterOffsets;
FilterOffsets.reserve(FilterIds.size());
int Offset = -1;
for(std::vector<unsigned>::const_iterator I = FilterIds.begin(),
E = FilterIds.end(); I != E; ++I) {
FilterOffsets.push_back(Offset);
Offset -= AsmPrinter::SizeULEB128(*I);
}
// Compute the actions table and gather the first action index for each
// landing pad site.
SmallVector<ActionEntry, 32> Actions;
SmallVector<unsigned, 64> FirstActions;
FirstActions.reserve(LandingPads.size());
int FirstAction = 0;
unsigned SizeActions = 0;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LP = LandingPads[i];
const std::vector<int> &TypeIds = LP->TypeIds;
const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0;
unsigned SizeSiteActions = 0;
if (NumShared < TypeIds.size()) {
unsigned SizeAction = 0;
ActionEntry *PrevAction = 0;
if (NumShared) {
const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size();
assert(Actions.size());
PrevAction = &Actions.back();
SizeAction = AsmPrinter::SizeSLEB128(PrevAction->NextAction) +
AsmPrinter::SizeSLEB128(PrevAction->ValueForTypeID);
for (unsigned j = NumShared; j != SizePrevIds; ++j) {
SizeAction -= AsmPrinter::SizeSLEB128(PrevAction->ValueForTypeID);
SizeAction += -PrevAction->NextAction;
PrevAction = PrevAction->Previous;
}
}
// Compute the actions.
for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) {
int TypeID = TypeIds[I];
assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
unsigned SizeTypeID = AsmPrinter::SizeSLEB128(ValueForTypeID);
int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
SizeAction = SizeTypeID + AsmPrinter::SizeSLEB128(NextAction);
SizeSiteActions += SizeAction;
ActionEntry Action = {ValueForTypeID, NextAction, PrevAction};
Actions.push_back(Action);
PrevAction = &Actions.back();
}
// Record the first action of the landing pad site.
FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
} // else identical - re-use previous FirstAction
FirstActions.push_back(FirstAction);
// Compute this sites contribution to size.
SizeActions += SizeSiteActions;
}
// Compute the call-site table. Entries must be ordered by address.
SmallVector<CallSiteEntry, 64> CallSites;
RangeMapType PadMap;
for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
const LandingPadInfo *LandingPad = LandingPads[i];
for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
unsigned BeginLabel = LandingPad->BeginLabels[j];
assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
PadRange P = { i, j };
PadMap[BeginLabel] = P;
}
}
bool MayThrow = false;
unsigned LastLabel = 0;
for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
I != E; ++I) {
for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
MI != E; ++MI) {
if (MI->getOpcode() != TargetInstrInfo::LABEL) {
MayThrow |= MI->getDesc().isCall();
continue;
}
unsigned BeginLabel = MI->getOperand(0).getImm();
assert(BeginLabel && "Invalid label!");
if (BeginLabel == LastLabel)
MayThrow = false;
RangeMapType::iterator L = PadMap.find(BeginLabel);
if (L == PadMap.end())
continue;
PadRange P = L->second;
const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
"Inconsistent landing pad map!");
// If some instruction between the previous try-range and this one may
// throw, create a call-site entry with no landing pad for the region
// between the try-ranges.
if (MayThrow) {
CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0};
CallSites.push_back(Site);
}
LastLabel = LandingPad->EndLabels[P.RangeIndex];
CallSiteEntry Site = {BeginLabel, LastLabel,
LandingPad->LandingPadLabel, FirstActions[P.PadIndex]};
assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel &&
"Invalid landing pad!");
// Try to merge with the previous call-site.
if (CallSites.size()) {
CallSiteEntry &Prev = CallSites[CallSites.size()-1];
if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
// Extend the range of the previous entry.
Prev.EndLabel = Site.EndLabel;
continue;
}
}
// Otherwise, create a new call-site.
CallSites.push_back(Site);
}
}
// If some instruction between the previous try-range and the end of the
// function may throw, create a call-site entry with no landing pad for the
// region following the try-range.
if (MayThrow) {
CallSiteEntry Site = {LastLabel, 0, 0, 0};
CallSites.push_back(Site);
}
// Final tallies.
unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start.
sizeof(int32_t) + // Site length.
sizeof(int32_t)); // Landing pad.
for (unsigned i = 0, e = CallSites.size(); i < e; ++i)
SizeSites += AsmPrinter::SizeULEB128(CallSites[i].Action);
unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize();
unsigned TypeOffset = sizeof(int8_t) + // Call site format
// Call-site table length
AsmPrinter::SizeULEB128(SizeSites) +
SizeSites + SizeActions + SizeTypes;
unsigned TotalSize = sizeof(int8_t) + // LPStart format
sizeof(int8_t) + // TType format
AsmPrinter::SizeULEB128(TypeOffset) + // TType base offset
TypeOffset;
unsigned SizeAlign = (4 - TotalSize) & 3;
// Begin the exception table.
MCE->emitAlignment(4);
for (unsigned i = 0; i != SizeAlign; ++i) {
MCE->emitByte(0);
// Asm->EOL("Padding");
}
unsigned char* DwarfExceptionTable = (unsigned char*)MCE->getCurrentPCValue();
// Emit the header.
MCE->emitByte(dwarf::DW_EH_PE_omit);
// Asm->EOL("LPStart format (DW_EH_PE_omit)");
MCE->emitByte(dwarf::DW_EH_PE_absptr);
// Asm->EOL("TType format (DW_EH_PE_absptr)");
MCE->emitULEB128Bytes(TypeOffset);
// Asm->EOL("TType base offset");
MCE->emitByte(dwarf::DW_EH_PE_udata4);
// Asm->EOL("Call site format (DW_EH_PE_udata4)");
MCE->emitULEB128Bytes(SizeSites);
// Asm->EOL("Call-site table length");
// Emit the landing pad site information.
for (unsigned i = 0; i < CallSites.size(); ++i) {
CallSiteEntry &S = CallSites[i];
intptr_t BeginLabelPtr = 0;
intptr_t EndLabelPtr = 0;
if (!S.BeginLabel) {
BeginLabelPtr = (intptr_t)StartFunction;
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(0);
else
MCE->emitInt64(0);
} else {
BeginLabelPtr = MCE->getLabelAddress(S.BeginLabel);
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction);
else
MCE->emitInt64(BeginLabelPtr - (intptr_t)StartFunction);
}
// Asm->EOL("Region start");
if (!S.EndLabel) {
EndLabelPtr = (intptr_t)EndFunction;
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32((intptr_t)EndFunction - BeginLabelPtr);
else
MCE->emitInt64((intptr_t)EndFunction - BeginLabelPtr);
} else {
EndLabelPtr = MCE->getLabelAddress(S.EndLabel);
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(EndLabelPtr - BeginLabelPtr);
else
MCE->emitInt64(EndLabelPtr - BeginLabelPtr);
}
//Asm->EOL("Region length");
if (!S.PadLabel) {
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(0);
else
MCE->emitInt64(0);
} else {
unsigned PadLabelPtr = MCE->getLabelAddress(S.PadLabel);
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction);
else
MCE->emitInt64(PadLabelPtr - (intptr_t)StartFunction);
}
// Asm->EOL("Landing pad");
MCE->emitULEB128Bytes(S.Action);
// Asm->EOL("Action");
}
// Emit the actions.
for (unsigned I = 0, N = Actions.size(); I != N; ++I) {
ActionEntry &Action = Actions[I];
MCE->emitSLEB128Bytes(Action.ValueForTypeID);
//Asm->EOL("TypeInfo index");
MCE->emitSLEB128Bytes(Action.NextAction);
//Asm->EOL("Next action");
}
// Emit the type ids.
for (unsigned M = TypeInfos.size(); M; --M) {
GlobalVariable *GV = TypeInfos[M - 1];
if (GV) {
if (TD->getPointerSize() == sizeof(int32_t)) {
MCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV));
} else {
MCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV));
}
} else {
if (TD->getPointerSize() == sizeof(int32_t))
MCE->emitInt32(0);
else
MCE->emitInt64(0);
}
// Asm->EOL("TypeInfo");
}
// Emit the filter typeids.
for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) {
unsigned TypeID = FilterIds[j];
MCE->emitULEB128Bytes(TypeID);
//Asm->EOL("Filter TypeInfo index");
}
MCE->emitAlignment(4);
return DwarfExceptionTable;
}
unsigned char* JITDwarfEmitter::EmitCommonEHFrame(const Function* Personality) {
unsigned PointerSize = TD->getPointerSize();
int stackGrowth = stackGrowthDirection == TargetFrameInfo::StackGrowsUp ?
PointerSize : -PointerSize;
unsigned char* StartCommonPtr = (unsigned char*)MCE->getCurrentPCValue();
// EH Common Frame header
MCE->allocateSpace(PointerSize, 0);
unsigned char* FrameCommonBeginPtr = (unsigned char*)MCE->getCurrentPCValue();
MCE->emitInt32((int)0);
MCE->emitByte(dwarf::DW_CIE_VERSION);
MCE->emitString(Personality ? "zPLR" : "zR");
MCE->emitULEB128Bytes(1);
MCE->emitSLEB128Bytes(stackGrowth);
MCE->emitByte(RI->getDwarfRegNum(RI->getRARegister(), true));
if (Personality) {
MCE->emitULEB128Bytes(7);
if (needsIndirectEncoding)
MCE->emitByte(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 |
dwarf::DW_EH_PE_indirect);
else
MCE->emitByte(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
if (PointerSize == 8)
MCE->emitInt64((intptr_t)Jit.getPointerToGlobal(Personality) -
MCE->getCurrentPCValue());
else
MCE->emitInt32((intptr_t)Jit.getPointerToGlobal(Personality) -
MCE->getCurrentPCValue());
MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel);
MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel);
} else {
MCE->emitULEB128Bytes(1);
MCE->emitULEB128Bytes(dwarf::DW_EH_PE_pcrel);
}
std::vector<MachineMove> Moves;
RI->getInitialFrameState(Moves);
EmitFrameMoves(0, Moves);
MCE->emitAlignment(4);
MCE->emitAt((uintptr_t*)StartCommonPtr,
(uintptr_t)((unsigned char*)MCE->getCurrentPCValue() -
FrameCommonBeginPtr));
return StartCommonPtr;
}
unsigned char* JITDwarfEmitter::EmitEHFrame(const Function* Personality,
unsigned char* StartCommonPtr,
unsigned char* StartFunction,
unsigned char* EndFunction,
unsigned char* ExceptionTable) {
unsigned PointerSize = TD->getPointerSize();
// EH frame header.
unsigned char* StartEHPtr = (unsigned char*)MCE->getCurrentPCValue();
MCE->allocateSpace(PointerSize, 0);
unsigned char* FrameBeginPtr = (unsigned char*)MCE->getCurrentPCValue();
// FDE CIE Offset
if (PointerSize == 8) {
MCE->emitInt64(FrameBeginPtr - StartCommonPtr);
MCE->emitInt64(StartFunction - (unsigned char*)MCE->getCurrentPCValue());
MCE->emitInt64(EndFunction - StartFunction);
} else {
MCE->emitInt32(FrameBeginPtr - StartCommonPtr);
MCE->emitInt32(StartFunction - (unsigned char*)MCE->getCurrentPCValue());
MCE->emitInt32(EndFunction - StartFunction);
}
// If there is a personality and landing pads then point to the language
// specific data area in the exception table.
if (MMI->getPersonalityIndex()) {
MCE->emitULEB128Bytes(4);
if (!MMI->getLandingPads().empty()) {
if (PointerSize == 8)
MCE->emitInt64(ExceptionTable - (unsigned char*)MCE->getCurrentPCValue());
else
MCE->emitInt32(ExceptionTable - (unsigned char*)MCE->getCurrentPCValue());
} else if (PointerSize == 8) {
MCE->emitInt64((int)0);
} else {
MCE->emitInt32((int)0);
}
} else {
MCE->emitULEB128Bytes(0);
}
// Indicate locations of function specific callee saved registers in
// frame.
EmitFrameMoves((intptr_t)StartFunction, MMI->getFrameMoves());
MCE->emitAlignment(4);
// Indicate the size of the table
MCE->emitAt((uintptr_t*)StartEHPtr,
(uintptr_t)((unsigned char*)MCE->getCurrentPCValue() -
StartEHPtr));
// Double zeroes for the unwind runtime
if (PointerSize == 8) {
MCE->emitInt64(0);
MCE->emitInt64(0);
} else {
MCE->emitInt32(0);
MCE->emitInt32(0);
}
return StartEHPtr;
}

View File

@ -0,0 +1,69 @@
//===------ JITDwarfEmitter.h - Write dwarf tables into memory ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a JITDwarfEmitter object that is used by the JIT to
// write dwarf tables to memory.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
#define LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H
namespace llvm {
class Function;
class MachineCodeEmitter;
class MachineFunction;
class MachineModuleInfo;
class MachineMove;
class TargetData;
class TargetMachine;
class TargetRegisterInfo;
class JITDwarfEmitter {
const TargetData* TD;
MachineCodeEmitter* MCE;
const TargetRegisterInfo* RI;
MachineModuleInfo* MMI;
JIT& Jit;
bool needsIndirectEncoding;
bool stackGrowthDirection;
public:
JITDwarfEmitter(JIT& jit);
unsigned char* EmitExceptionTable(MachineFunction* MF,
unsigned char* StartFunction,
unsigned char* EndFunction);
void EmitFrameMoves(intptr_t BaseLabelPtr,
const std::vector<MachineMove> &Moves);
unsigned char* EmitCommonEHFrame(const Function* Personality);
unsigned char* EmitEHFrame(const Function* Personality,
unsigned char* StartBufferPtr,
unsigned char* StartFunction,
unsigned char* EndFunction,
unsigned char* ExceptionTable);
unsigned char* EmitDwarfTable(MachineFunction& F,
MachineCodeEmitter& MCE,
unsigned char* StartFunction,
unsigned char* EndFunction);
void setModuleInfo(MachineModuleInfo* Info) {
MMI = Info;
}
};
} // end namespace llvm
#endif // LLVM_EXECUTION_ENGINE_JIT_DWARFEMITTER_H

View File

@ -14,6 +14,7 @@
#define DEBUG_TYPE "jit" #define DEBUG_TYPE "jit"
#include "JIT.h" #include "JIT.h"
#include "JITDwarfEmitter.h"
#include "llvm/Constant.h" #include "llvm/Constant.h"
#include "llvm/Module.h" #include "llvm/Module.h"
#include "llvm/Type.h" #include "llvm/Type.h"
@ -21,11 +22,13 @@
#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRelocation.h" #include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/Target/TargetData.h" #include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h" #include "llvm/Target/TargetJITInfo.h"
#include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h" #include "llvm/Support/Debug.h"
#include "llvm/Support/MutexGuard.h" #include "llvm/Support/MutexGuard.h"
#include "llvm/System/Disassembler.h" #include "llvm/System/Disassembler.h"
@ -336,6 +339,17 @@ namespace {
/// Resolver - This contains info about the currently resolved functions. /// Resolver - This contains info about the currently resolved functions.
JITResolver Resolver; JITResolver Resolver;
/// DE - The dwarf emitter for the jit.
JITDwarfEmitter *DE;
/// LabelLocations - This vector is a mapping from Label ID's to their
/// address.
std::vector<intptr_t> LabelLocations;
/// MMI - Machine module info for exception informations
MachineModuleInfo* MMI;
public: public:
JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) { JITEmitter(JIT &jit, JITMemoryManager *JMM) : Resolver(jit) {
MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
@ -343,9 +357,12 @@ namespace {
MemMgr->AllocateGOT(); MemMgr->AllocateGOT();
DOUT << "JIT is managing a GOT\n"; DOUT << "JIT is managing a GOT\n";
} }
if (ExceptionHandling) DE = new JITDwarfEmitter(jit);
} }
~JITEmitter() { ~JITEmitter() {
delete MemMgr; delete MemMgr;
if (ExceptionHandling) delete DE;
} }
JITResolver &getJITResolver() { return Resolver; } JITResolver &getJITResolver() { return Resolver; }
@ -384,6 +401,24 @@ namespace {
void deallocateMemForFunction(Function *F) { void deallocateMemForFunction(Function *F) {
MemMgr->deallocateMemForFunction(F); MemMgr->deallocateMemForFunction(F);
} }
virtual void emitLabel(uint64_t LabelID) {
if (LabelLocations.size() <= LabelID)
LabelLocations.resize((LabelID+1)*2);
LabelLocations[LabelID] = getCurrentPCValue();
}
virtual intptr_t getLabelAddress(uint64_t LabelID) const {
assert(LabelLocations.size() > (unsigned)LabelID &&
LabelLocations[LabelID] && "Label not emitted!");
return LabelLocations[LabelID];
}
virtual void setModuleInfo(MachineModuleInfo* Info) {
MMI = Info;
if (ExceptionHandling) DE->setModuleInfo(Info);
}
private: private:
void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference, void *getPointerToGVLazyPtr(GlobalValue *V, void *Reference,
@ -544,6 +579,24 @@ bool JITEmitter::finishFunction(MachineFunction &F) {
DOUT << "Disassembled code:\n" DOUT << "Disassembled code:\n"
<< sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart); << sys::disassembleBuffer(FnStart, FnEnd-FnStart, (uintptr_t)FnStart);
#endif #endif
if (ExceptionHandling) {
uintptr_t ActualSize;
SavedBufferBegin = BufferBegin;
SavedBufferEnd = BufferEnd;
SavedCurBufferPtr = CurBufferPtr;
BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
ActualSize);
BufferEnd = BufferBegin+ActualSize;
unsigned char* FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd);
MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, FrameRegister);
BufferBegin = SavedBufferBegin;
BufferEnd = SavedBufferEnd;
CurBufferPtr = SavedCurBufferPtr;
TheJIT->RegisterTable(FrameRegister);
}
MMI->EndFunction();
return false; return false;
} }

View File

@ -256,6 +256,7 @@ namespace {
sys::MemoryBlock getNewMemoryBlock(unsigned size); sys::MemoryBlock getNewMemoryBlock(unsigned size);
std::map<const Function*, MemoryRangeHeader*> FunctionBlocks; std::map<const Function*, MemoryRangeHeader*> FunctionBlocks;
std::map<const Function*, MemoryRangeHeader*> TableBlocks;
public: public:
DefaultJITMemoryManager(); DefaultJITMemoryManager();
~DefaultJITMemoryManager(); ~DefaultJITMemoryManager();
@ -290,6 +291,28 @@ namespace {
FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
} }
/// startExceptionTable - Use startFunctionBody to allocate memory for the
/// function's exception table.
unsigned char* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
return startFunctionBody(F, ActualSize);
}
/// endExceptionTable - The exception table of F is now allocated,
/// and takes the memory in the range [TableStart,TableEnd).
void endExceptionTable(const Function *F, unsigned char *TableStart,
unsigned char *TableEnd,
unsigned char* FrameRegister) {
assert(TableEnd > TableStart);
assert(TableStart == (unsigned char *)(CurBlock+1) &&
"Mismatched table start/end!");
uintptr_t BlockSize = TableEnd - (unsigned char *)CurBlock;
TableBlocks[F] = CurBlock;
// Release the memory at the end of this block that isn't needed.
FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
}
unsigned char *getGOTBase() const { unsigned char *getGOTBase() const {
return GOTBase; return GOTBase;
} }
@ -315,6 +338,24 @@ namespace {
// Finally, remove this entry from FunctionBlocks. // Finally, remove this entry from FunctionBlocks.
FunctionBlocks.erase(I); FunctionBlocks.erase(I);
I = TableBlocks.find(F);
if (I == TableBlocks.end()) return;
// Find the block that is allocated for this function.
MemRange = I->second;
assert(MemRange->ThisAllocated && "Block isn't allocated!");
// Fill the buffer with garbage!
#ifndef NDEBUG
memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
#endif
// Free the memory.
FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
// Finally, remove this entry from TableBlocks.
TableBlocks.erase(I);
} }
}; };
} }

View File

@ -20,6 +20,7 @@
#include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h" #include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h" #include "llvm/Support/Compiler.h"
@ -39,6 +40,11 @@ namespace {
/// ///
int getMachineOpValue(MachineInstr &MI, MachineOperand &MO); int getMachineOpValue(MachineInstr &MI, MachineOperand &MO);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
public: public:
static char ID; static char ID;
PPCCodeEmitter(TargetMachine &T, MachineCodeEmitter &M) PPCCodeEmitter(TargetMachine &T, MachineCodeEmitter &M)
@ -82,6 +88,8 @@ bool PPCCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default || assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) && MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!"); "JIT relocation model must be set to static or default!");
MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
do { do {
MovePCtoLROffset = 0; MovePCtoLROffset = 0;
MCE.startFunction(MF); MCE.startFunction(MF);
@ -101,6 +109,9 @@ void PPCCodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) {
default: default:
MCE.emitWordBE(getBinaryCodeForInstr(*I)); MCE.emitWordBE(getBinaryCodeForInstr(*I));
break; break;
case TargetInstrInfo::LABEL:
MCE.emitLabel(MI.getOperand(0).getImm());
break;
case PPC::IMPLICIT_DEF_GPRC: case PPC::IMPLICIT_DEF_GPRC:
case PPC::IMPLICIT_DEF_G8RC: case PPC::IMPLICIT_DEF_G8RC:
case PPC::IMPLICIT_DEF_F8: case PPC::IMPLICIT_DEF_F8:

View File

@ -23,6 +23,7 @@
#include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h" #include "llvm/Function.h"
#include "llvm/ADT/Statistic.h" #include "llvm/ADT/Statistic.h"
@ -62,6 +63,11 @@ namespace {
void emitInstruction(const MachineInstr &MI, void emitInstruction(const MachineInstr &MI,
const TargetInstrDesc *Desc); const TargetInstrDesc *Desc);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private: private:
void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
@ -104,6 +110,9 @@ bool Emitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default || assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) && MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!"); "JIT relocation model must be set to static or default!");
MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
II = ((X86TargetMachine&)TM).getInstrInfo(); II = ((X86TargetMachine&)TM).getInstrInfo();
TD = ((X86TargetMachine&)TM).getTargetData(); TD = ((X86TargetMachine&)TM).getTargetData();
Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
@ -596,13 +605,13 @@ void Emitter::emitInstruction(const MachineInstr &MI,
// Remember the current PC offset, this is the PIC relocation // Remember the current PC offset, this is the PIC relocation
// base address. // base address.
switch (Opcode) { switch (Opcode) {
#ifndef NDEBUG
default: default:
assert(0 && "psuedo instructions should be removed before code emission"); assert(0 && "psuedo instructions should be removed before code emission");
case TargetInstrInfo::INLINEASM: case TargetInstrInfo::INLINEASM:
assert(0 && "JIT does not support inline asm!\n"); assert(0 && "JIT does not support inline asm!\n");
case TargetInstrInfo::LABEL: case TargetInstrInfo::LABEL:
assert(0 && "JIT does not support meta labels!\n"); MCE.emitLabel(MI.getOperand(0).getImm());
break;
case X86::IMPLICIT_DEF_GR8: case X86::IMPLICIT_DEF_GR8:
case X86::IMPLICIT_DEF_GR16: case X86::IMPLICIT_DEF_GR16:
case X86::IMPLICIT_DEF_GR32: case X86::IMPLICIT_DEF_GR32:
@ -613,7 +622,6 @@ void Emitter::emitInstruction(const MachineInstr &MI,
case X86::IMPLICIT_DEF_VR128: case X86::IMPLICIT_DEF_VR128:
case X86::FP_REG_KILL: case X86::FP_REG_KILL:
break; break;
#endif
case X86::MOVPC32r: { case X86::MOVPC32r: {
// This emits the "call" portion of this pseudo instruction. // This emits the "call" portion of this pseudo instruction.
MCE.emitByte(BaseOpcode); MCE.emitByte(BaseOpcode);
@ -627,7 +635,6 @@ void Emitter::emitInstruction(const MachineInstr &MI,
} }
CurOp = NumOps; CurOp = NumOps;
break; break;
case X86II::RawFrm: case X86II::RawFrm:
MCE.emitByte(BaseOpcode); MCE.emitByte(BaseOpcode);