Move ScopBuilder into its own file. NFC.

The methods in ScopBuilder are used for the construction of a Scop,
while the remaining classes of ScopInfo are required by all passes that
use Polly's polyhedral analysis.

llvm-svn: 273982
This commit is contained in:
Michael Kruse 2016-06-28 01:37:20 +00:00
parent 6ff419c2ec
commit 2133cb9a24
4 changed files with 674 additions and 648 deletions

View File

@ -7,10 +7,8 @@
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
// Store the polyhedral model representation of a static control flow region,
// also called SCoP (Static Control Part).
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. CLooG, Pluto, Loopo, Graphite.

View File

@ -0,0 +1,670 @@
//===- ScopBuilder.cpp ---------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/IR/DiagnosticInfo.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scops"
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
static cl::opt<bool> ModelReadOnlyScalars(
"polly-analyze-read-only-scalars",
cl::desc("Model read-only scalar values in the scop description"),
cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
void ScopBuilder::buildPHIAccesses(PHINode *PHI, Region *NonAffineSubRegion,
bool IsExitBlock) {
// PHI nodes that are in the exit block of the region, hence if IsExitBlock is
// true, are not modeled as ordinary PHI nodes as they are not part of the
// region. However, we model the operands in the predecessor blocks that are
// part of the region as regular scalar accesses.
// If we can synthesize a PHI we can skip it, however only if it is in
// the region. If it is not it can only be in the exit block of the region.
// In this case we model the operands but not the PHI itself.
auto *Scope = LI.getLoopFor(PHI->getParent());
if (!IsExitBlock && canSynthesize(PHI, *scop, &LI, &SE, Scope))
return;
// PHI nodes are modeled as if they had been demoted prior to the SCoP
// detection. Hence, the PHI is a load of a new memory location in which the
// incoming value was written at the end of the incoming basic block.
bool OnlyNonAffineSubRegionOperands = true;
for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
Value *Op = PHI->getIncomingValue(u);
BasicBlock *OpBB = PHI->getIncomingBlock(u);
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
continue;
OnlyNonAffineSubRegionOperands = false;
ensurePHIWrite(PHI, OpBB, Op, IsExitBlock);
}
if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
addPHIReadAccess(PHI);
}
}
void ScopBuilder::buildScalarDependences(Instruction *Inst) {
assert(!isa<PHINode>(Inst));
// Pull-in required operands.
for (Use &Op : Inst->operands())
ensureValueRead(Op.get(), Inst->getParent());
}
void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
// Check for uses of this instruction outside the scop. Because we do not
// iterate over such instructions and therefore did not "ensure" the existence
// of a write, we must determine such use here.
for (Use &U : Inst->uses()) {
Instruction *UI = dyn_cast<Instruction>(U.getUser());
if (!UI)
continue;
BasicBlock *UseParent = getUseBlock(U);
BasicBlock *UserParent = UI->getParent();
// An escaping value is either used by an instruction not within the scop,
// or (when the scop region's exit needs to be simplified) by a PHI in the
// scop's exit block. This is because region simplification before code
// generation inserts new basic blocks before the PHI such that its incoming
// blocks are not in the scop anymore.
if (!scop->contains(UseParent) ||
(isa<PHINode>(UI) && scop->isExit(UserParent) &&
scop->hasSingleExitEdge())) {
// At least one escaping use found.
ensureValueWrite(Inst);
break;
}
}
}
bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, Loop *L) {
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
Value *Address = Inst.getPointerOperand();
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
auto *Src = BitCast->getOperand(0);
auto *SrcTy = Src->getType();
auto *DstTy = BitCast->getType();
// Do not try to delinearize non-sized (opaque) pointers.
if ((SrcTy->isPointerTy() && !SrcTy->getPointerElementType()->isSized()) ||
(DstTy->isPointerTy() && !DstTy->getPointerElementType()->isSized())) {
return false;
}
if (SrcTy->isPointerTy() && DstTy->isPointerTy() &&
DL.getTypeAllocSize(SrcTy->getPointerElementType()) ==
DL.getTypeAllocSize(DstTy->getPointerElementType()))
Address = Src;
}
auto *GEP = dyn_cast<GetElementPtrInst>(Address);
if (!GEP)
return false;
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
auto *BasePtr = GEP->getOperand(0);
if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
BasePtr = BasePtrCast->getOperand(0);
// Check for identical base pointers to ensure that we do not miss index
// offsets that have been added before this GEP is applied.
if (BasePtr != BasePointer->getValue())
return false;
std::vector<const SCEV *> SizesSCEV;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
for (auto *Subscript : Subscripts) {
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&scop->getRegion(), L, Subscript, SE, &AccessILS))
return false;
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
return false;
}
if (Sizes.empty())
return false;
for (auto V : Sizes)
SizesSCEV.push_back(SE.getSCEV(
ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, true,
Subscripts, SizesSCEV, Val);
return true;
}
bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, Loop *L) {
if (!PollyDelinearize)
return false;
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
unsigned ElementSize = DL.getTypeAllocSize(ElementType);
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
auto &InsnToMemAcc = scop->getInsnToMemAccMap();
auto AccItr = InsnToMemAcc.find(Inst);
if (AccItr == InsnToMemAcc.end())
return false;
std::vector<const SCEV *> Sizes(
AccItr->second.Shape->DelinearizedSizes.begin(),
AccItr->second.Shape->DelinearizedSizes.end());
// Remove the element size. This information is already provided by the
// ElementSize parameter. In case the element size of this access and the
// element size used for delinearization differs the delinearization is
// incorrect. Hence, we invalidate the scop.
//
// TODO: Handle delinearization with differing element sizes.
auto DelinearizedSize =
cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
Sizes.pop_back();
if (ElementSize != DelinearizedSize)
scop->invalidate(DELINEARIZATION, Inst->getDebugLoc());
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, true,
AccItr->second.DelinearizedSubscripts, Sizes, Val);
return true;
}
bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, Loop *L) {
auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);
if (MemIntr == nullptr)
return false;
auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
assert(LengthVal);
// Check if the length val is actually affine or if we overapproximate it
InvariantLoadsSetTy AccessILS;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
bool LengthIsAffine =
isAffineExpr(&scop->getRegion(), L, LengthVal, SE, &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
LengthIsAffine = false;
if (!LengthIsAffine)
LengthVal = nullptr;
auto *DestPtrVal = MemIntr->getDest();
assert(DestPtrVal);
auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
assert(DestAccFunc);
// Ignore accesses to "NULL".
// TODO: We could use this to optimize the region further, e.g., intersect
// the context with
// isl_set_complement(isl_set_params(getDomain()))
// as we know it would be undefined to execute this instruction anyway.
if (DestAccFunc->isZero())
return true;
auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
assert(DestPtrSCEV);
DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
addArrayAccess(Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
IntegerType::getInt8Ty(DestPtrVal->getContext()), false,
{DestAccFunc, LengthVal}, {}, Inst.getValueOperand());
auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
if (!MemTrans)
return true;
auto *SrcPtrVal = MemTrans->getSource();
assert(SrcPtrVal);
auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
assert(SrcAccFunc);
// Ignore accesses to "NULL".
// TODO: See above TODO
if (SrcAccFunc->isZero())
return true;
auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
assert(SrcPtrSCEV);
SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
addArrayAccess(Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
IntegerType::getInt8Ty(SrcPtrVal->getContext()), false,
{SrcAccFunc, LengthVal}, {}, Inst.getValueOperand());
return true;
}
bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, Loop *L) {
auto *CI = dyn_cast_or_null<CallInst>(Inst);
if (CI == nullptr)
return false;
if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI))
return true;
bool ReadOnly = false;
auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
auto *CalledFunction = CI->getCalledFunction();
switch (AA.getModRefBehavior(CalledFunction)) {
case llvm::FMRB_UnknownModRefBehavior:
llvm_unreachable("Unknown mod ref behaviour cannot be represented.");
case llvm::FMRB_DoesNotAccessMemory:
return true;
case llvm::FMRB_OnlyReadsMemory:
GlobalReads.push_back(CI);
return true;
case llvm::FMRB_OnlyReadsArgumentPointees:
ReadOnly = true;
// Fall through
case llvm::FMRB_OnlyAccessesArgumentPointees:
auto AccType = ReadOnly ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
for (const auto &Arg : CI->arg_operands()) {
if (!Arg->getType()->isPointerTy())
continue;
auto *ArgSCEV = SE.getSCEVAtScope(Arg, L);
if (ArgSCEV->isZero())
continue;
auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
addArrayAccess(Inst, AccType, ArgBasePtr->getValue(),
ArgBasePtr->getType(), false, {AF}, {}, CI);
}
return true;
}
return true;
}
void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, Loop *L) {
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);
// Check if the access depends on a loop contained in a non-affine subregion.
bool isVariantInNonAffineLoop = false;
SetVector<const Loop *> Loops;
auto &BoxedLoops = scop->getBoxedLoops();
findLoops(AccessFunction, Loops);
for (const Loop *L : Loops)
if (BoxedLoops.count(L))
isVariantInNonAffineLoop = true;
InvariantLoadsSetTy AccessILS;
bool IsAffine =
!isVariantInNonAffineLoop &&
isAffineExpr(&scop->getRegion(), L, AccessFunction, SE, &AccessILS);
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
IsAffine = false;
if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, IsAffine,
{AccessFunction}, {}, Val);
}
void ScopBuilder::buildMemoryAccess(MemAccInst Inst, Loop *L) {
if (buildAccessMemIntrinsic(Inst, L))
return;
if (buildAccessCallInst(Inst, L))
return;
if (buildAccessMultiDimFixed(Inst, L))
return;
if (buildAccessMultiDimParam(Inst, L))
return;
buildAccessSingleDim(Inst, L);
}
void ScopBuilder::buildAccessFunctions(Region &SR) {
if (scop->isNonAffineSubRegion(&SR)) {
for (BasicBlock *BB : SR.blocks())
buildAccessFunctions(*BB, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildAccessFunctions(*I->getNodeAs<Region>());
else
buildAccessFunctions(*I->getNodeAs<BasicBlock>());
}
void ScopBuilder::buildStmts(Region &SR) {
if (scop->isNonAffineSubRegion(&SR)) {
scop->addScopStmt(nullptr, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildStmts(*I->getNodeAs<Region>());
else
scop->addScopStmt(I->getNodeAs<BasicBlock>(), nullptr);
}
void ScopBuilder::buildAccessFunctions(BasicBlock &BB,
Region *NonAffineSubRegion,
bool IsExitBlock) {
// We do not build access functions for error blocks, as they may contain
// instructions we can not model.
if (isErrorBlock(BB, scop->getRegion(), LI, DT) && !IsExitBlock)
return;
Loop *L = LI.getLoopFor(&BB);
for (Instruction &Inst : BB) {
PHINode *PHI = dyn_cast<PHINode>(&Inst);
if (PHI)
buildPHIAccesses(PHI, NonAffineSubRegion, IsExitBlock);
// For the exit block we stop modeling after the last PHI node.
if (!PHI && IsExitBlock)
break;
if (auto MemInst = MemAccInst::dyn_cast(Inst))
buildMemoryAccess(MemInst, L);
if (isIgnoredIntrinsic(&Inst))
continue;
// PHI nodes have already been modeled above and TerminatorInsts that are
// not part of a non-affine subregion are fully modeled and regenerated
// from the polyhedral domains. Hence, they do not need to be modeled as
// explicit data dependences.
if (!PHI && (!isa<TerminatorInst>(&Inst) || NonAffineSubRegion))
buildScalarDependences(&Inst);
if (!IsExitBlock)
buildEscapingDependences(&Inst);
}
}
MemoryAccess *ScopBuilder::addMemoryAccess(
BasicBlock *BB, Instruction *Inst, MemoryAccess::AccessType AccType,
Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
ScopArrayInfo::MemoryKind Kind) {
ScopStmt *Stmt = scop->getStmtFor(BB);
// Do not create a memory access for anything not in the SCoP. It would be
// ignored anyway.
if (!Stmt)
return nullptr;
AccFuncSetType &AccList = scop->getOrCreateAccessFunctions(BB);
Value *BaseAddr = BaseAddress;
std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, "");
bool isKnownMustAccess = false;
// Accesses in single-basic block statements are always excuted.
if (Stmt->isBlockStmt())
isKnownMustAccess = true;
if (Stmt->isRegionStmt()) {
// Accesses that dominate the exit block of a non-affine region are always
// executed. In non-affine regions there may exist MK_Values that do not
// dominate the exit. MK_Values will always dominate the exit and MK_PHIs
// only if there is at most one PHI_WRITE in the non-affine region.
if (DT.dominates(BB, Stmt->getRegion()->getExit()))
isKnownMustAccess = true;
}
// Non-affine PHI writes do not "happen" at a particular instruction, but
// after exiting the statement. Therefore they are guaranteed execute and
// overwrite the old value.
if (Kind == ScopArrayInfo::MK_PHI || Kind == ScopArrayInfo::MK_ExitPHI)
isKnownMustAccess = true;
if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
AccList.emplace_back(Stmt, Inst, AccType, BaseAddress, ElementType, Affine,
Subscripts, Sizes, AccessValue, Kind, BaseName);
Stmt->addAccess(&AccList.back());
return &AccList.back();
}
void ScopBuilder::addArrayAccess(
MemAccInst MemAccInst, MemoryAccess::AccessType AccType, Value *BaseAddress,
Type *ElementType, bool IsAffine, ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, Value *AccessValue) {
ArrayBasePointers.insert(BaseAddress);
addMemoryAccess(MemAccInst->getParent(), MemAccInst, AccType, BaseAddress,
ElementType, IsAffine, AccessValue, Subscripts, Sizes,
ScopArrayInfo::MK_Array);
}
void ScopBuilder::ensureValueWrite(Instruction *Inst) {
ScopStmt *Stmt = scop->getStmtFor(Inst);
// Inst not defined within this SCoP.
if (!Stmt)
return;
// Do not process further if the instruction is already written.
if (Stmt->lookupValueWriteOf(Inst))
return;
addMemoryAccess(Inst->getParent(), Inst, MemoryAccess::MUST_WRITE, Inst,
Inst->getType(), true, Inst, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), ScopArrayInfo::MK_Value);
}
void ScopBuilder::ensureValueRead(Value *V, BasicBlock *UserBB) {
// There cannot be an "access" for literal constants. BasicBlock references
// (jump destinations) also never change.
if ((isa<Constant>(V) && !isa<GlobalVariable>(V)) || isa<BasicBlock>(V))
return;
// If the instruction can be synthesized and the user is in the region we do
// not need to add a value dependences.
auto *Scope = LI.getLoopFor(UserBB);
if (canSynthesize(V, *scop, &LI, &SE, Scope))
return;
// Do not build scalar dependences for required invariant loads as we will
// hoist them later on anyway or drop the SCoP if we cannot.
auto &ScopRIL = scop->getRequiredInvariantLoads();
if (ScopRIL.count(dyn_cast<LoadInst>(V)))
return;
// Determine the ScopStmt containing the value's definition and use. There is
// no defining ScopStmt if the value is a function argument, a global value,
// or defined outside the SCoP.
Instruction *ValueInst = dyn_cast<Instruction>(V);
ScopStmt *ValueStmt = ValueInst ? scop->getStmtFor(ValueInst) : nullptr;
ScopStmt *UserStmt = scop->getStmtFor(UserBB);
// We do not model uses outside the scop.
if (!UserStmt)
return;
// Add MemoryAccess for invariant values only if requested.
if (!ModelReadOnlyScalars && !ValueStmt)
return;
// Ignore use-def chains within the same ScopStmt.
if (ValueStmt == UserStmt)
return;
// Do not create another MemoryAccess for reloading the value if one already
// exists.
if (UserStmt->lookupValueReadOf(V))
return;
// For exit PHIs use the MK_ExitPHI MemoryKind not MK_Value.
ScopArrayInfo::MemoryKind Kind = ScopArrayInfo::MK_Value;
if (!ValueStmt && isa<PHINode>(V))
Kind = ScopArrayInfo::MK_ExitPHI;
addMemoryAccess(UserBB, nullptr, MemoryAccess::READ, V, V->getType(), true, V,
ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(), Kind);
if (ValueInst)
ensureValueWrite(ValueInst);
}
void ScopBuilder::ensurePHIWrite(PHINode *PHI, BasicBlock *IncomingBlock,
Value *IncomingValue, bool IsExitBlock) {
// As the incoming block might turn out to be an error statement ensure we
// will create an exit PHI SAI object. It is needed during code generation
// and would be created later anyway.
if (IsExitBlock)
scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
ScopArrayInfo::MK_ExitPHI);
ScopStmt *IncomingStmt = scop->getStmtFor(IncomingBlock);
if (!IncomingStmt)
return;
// Take care for the incoming value being available in the incoming block.
// This must be done before the check for multiple PHI writes because multiple
// exiting edges from subregion each can be the effective written value of the
// subregion. As such, all of them must be made available in the subregion
// statement.
ensureValueRead(IncomingValue, IncomingBlock);
// Do not add more than one MemoryAccess per PHINode and ScopStmt.
if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
assert(Acc->getAccessInstruction() == PHI);
Acc->addIncoming(IncomingBlock, IncomingValue);
return;
}
MemoryAccess *Acc = addMemoryAccess(
IncomingStmt->getEntryBlock(), PHI, MemoryAccess::MUST_WRITE, PHI,
PHI->getType(), true, PHI, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(),
IsExitBlock ? ScopArrayInfo::MK_ExitPHI : ScopArrayInfo::MK_PHI);
assert(Acc);
Acc->addIncoming(IncomingBlock, IncomingValue);
}
void ScopBuilder::addPHIReadAccess(PHINode *PHI) {
addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI,
PHI->getType(), true, PHI, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), ScopArrayInfo::MK_PHI);
}
void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
scop.reset(new Scop(R, SE, LI, *SD.getDetectionContext(&R)));
buildStmts(R);
buildAccessFunctions(R);
// In case the region does not have an exiting block we will later (during
// code generation) split the exit block. This will move potential PHI nodes
// from the current exit block into the new region exiting block. Hence, PHI
// nodes that are at this point not part of the region will be.
// To handle these PHI nodes later we will now model their operands as scalar
// accesses. Note that we do not model anything in the exit block if we have
// an exiting block in the region, as there will not be any splitting later.
if (!scop->hasSingleExitEdge())
buildAccessFunctions(*R.getExit(), nullptr,
/* IsExitBlock */ true);
// Create memory accesses for global reads since all arrays are now known.
auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
for (auto *GlobalRead : GlobalReads)
for (auto *BP : ArrayBasePointers)
addArrayAccess(MemAccInst(GlobalRead), MemoryAccess::READ, BP,
BP->getType(), false, {AF}, {}, GlobalRead);
scop->init(AA, AC, DT, LI);
}
ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
ScopDetection &SD, ScalarEvolution &SE)
: AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE) {
Function *F = R->getEntry()->getParent();
DebugLoc Beg, End;
getDebugLocations(getBBPairForRegion(R), Beg, End);
std::string Msg = "SCoP begins here.";
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, Beg, Msg);
buildScop(*R, AC);
DEBUG(scop->print(dbgs()));
if (!scop->hasFeasibleRuntimeContext()) {
Msg = "SCoP ends here but was dismissed.";
scop.reset();
} else {
Msg = "SCoP ends here.";
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
}
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, End, Msg);
}

View File

@ -1,4 +1,4 @@
//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//===--------- ScopInfo.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
@ -60,9 +60,6 @@ using namespace polly;
#define DEBUG_TYPE "polly-scops"
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
// The maximal number of basic sets we allow during domain construction to
// be created. More complex scops will result in very high compile time and
// are also unlikely to result in good code
@ -73,11 +70,6 @@ static cl::opt<bool> PollyRemarksMinimal(
cl::desc("Do not emit remarks about assumptions that are known"),
cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
static cl::opt<bool> ModelReadOnlyScalars(
"polly-analyze-read-only-scalars",
cl::desc("Model read-only scalar values in the scop description"),
cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
@ -4185,641 +4177,6 @@ int Scop::getRelativeLoopDepth(const Loop *L) const {
return L->getLoopDepth() - OuterLoop->getLoopDepth();
}
void ScopBuilder::buildPHIAccesses(PHINode *PHI, Region *NonAffineSubRegion,
bool IsExitBlock) {
// PHI nodes that are in the exit block of the region, hence if IsExitBlock is
// true, are not modeled as ordinary PHI nodes as they are not part of the
// region. However, we model the operands in the predecessor blocks that are
// part of the region as regular scalar accesses.
// If we can synthesize a PHI we can skip it, however only if it is in
// the region. If it is not it can only be in the exit block of the region.
// In this case we model the operands but not the PHI itself.
auto *Scope = LI.getLoopFor(PHI->getParent());
if (!IsExitBlock && canSynthesize(PHI, *scop, &LI, &SE, Scope))
return;
// PHI nodes are modeled as if they had been demoted prior to the SCoP
// detection. Hence, the PHI is a load of a new memory location in which the
// incoming value was written at the end of the incoming basic block.
bool OnlyNonAffineSubRegionOperands = true;
for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
Value *Op = PHI->getIncomingValue(u);
BasicBlock *OpBB = PHI->getIncomingBlock(u);
// Do not build scalar dependences inside a non-affine subregion.
if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
continue;
OnlyNonAffineSubRegionOperands = false;
ensurePHIWrite(PHI, OpBB, Op, IsExitBlock);
}
if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
addPHIReadAccess(PHI);
}
}
void ScopBuilder::buildScalarDependences(Instruction *Inst) {
assert(!isa<PHINode>(Inst));
// Pull-in required operands.
for (Use &Op : Inst->operands())
ensureValueRead(Op.get(), Inst->getParent());
}
void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
// Check for uses of this instruction outside the scop. Because we do not
// iterate over such instructions and therefore did not "ensure" the existence
// of a write, we must determine such use here.
for (Use &U : Inst->uses()) {
Instruction *UI = dyn_cast<Instruction>(U.getUser());
if (!UI)
continue;
BasicBlock *UseParent = getUseBlock(U);
BasicBlock *UserParent = UI->getParent();
// An escaping value is either used by an instruction not within the scop,
// or (when the scop region's exit needs to be simplified) by a PHI in the
// scop's exit block. This is because region simplification before code
// generation inserts new basic blocks before the PHI such that its incoming
// blocks are not in the scop anymore.
if (!scop->contains(UseParent) ||
(isa<PHINode>(UI) && scop->isExit(UserParent) &&
scop->hasSingleExitEdge())) {
// At least one escaping use found.
ensureValueWrite(Inst);
break;
}
}
}
bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, Loop *L) {
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
Value *Address = Inst.getPointerOperand();
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
auto *Src = BitCast->getOperand(0);
auto *SrcTy = Src->getType();
auto *DstTy = BitCast->getType();
// Do not try to delinearize non-sized (opaque) pointers.
if ((SrcTy->isPointerTy() && !SrcTy->getPointerElementType()->isSized()) ||
(DstTy->isPointerTy() && !DstTy->getPointerElementType()->isSized())) {
return false;
}
if (SrcTy->isPointerTy() && DstTy->isPointerTy() &&
DL.getTypeAllocSize(SrcTy->getPointerElementType()) ==
DL.getTypeAllocSize(DstTy->getPointerElementType()))
Address = Src;
}
auto *GEP = dyn_cast<GetElementPtrInst>(Address);
if (!GEP)
return false;
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
auto *BasePtr = GEP->getOperand(0);
if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
BasePtr = BasePtrCast->getOperand(0);
// Check for identical base pointers to ensure that we do not miss index
// offsets that have been added before this GEP is applied.
if (BasePtr != BasePointer->getValue())
return false;
std::vector<const SCEV *> SizesSCEV;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
for (auto *Subscript : Subscripts) {
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&scop->getRegion(), L, Subscript, SE, &AccessILS))
return false;
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
return false;
}
if (Sizes.empty())
return false;
for (auto V : Sizes)
SizesSCEV.push_back(SE.getSCEV(
ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, true,
Subscripts, SizesSCEV, Val);
return true;
}
bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, Loop *L) {
if (!PollyDelinearize)
return false;
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
unsigned ElementSize = DL.getTypeAllocSize(ElementType);
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
auto &InsnToMemAcc = scop->getInsnToMemAccMap();
auto AccItr = InsnToMemAcc.find(Inst);
if (AccItr == InsnToMemAcc.end())
return false;
std::vector<const SCEV *> Sizes(
AccItr->second.Shape->DelinearizedSizes.begin(),
AccItr->second.Shape->DelinearizedSizes.end());
// Remove the element size. This information is already provided by the
// ElementSize parameter. In case the element size of this access and the
// element size used for delinearization differs the delinearization is
// incorrect. Hence, we invalidate the scop.
//
// TODO: Handle delinearization with differing element sizes.
auto DelinearizedSize =
cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
Sizes.pop_back();
if (ElementSize != DelinearizedSize)
scop->invalidate(DELINEARIZATION, Inst->getDebugLoc());
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, true,
AccItr->second.DelinearizedSubscripts, Sizes, Val);
return true;
}
bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, Loop *L) {
auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);
if (MemIntr == nullptr)
return false;
auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
assert(LengthVal);
// Check if the length val is actually affine or if we overapproximate it
InvariantLoadsSetTy AccessILS;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
bool LengthIsAffine =
isAffineExpr(&scop->getRegion(), L, LengthVal, SE, &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
LengthIsAffine = false;
if (!LengthIsAffine)
LengthVal = nullptr;
auto *DestPtrVal = MemIntr->getDest();
assert(DestPtrVal);
auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
assert(DestAccFunc);
// Ignore accesses to "NULL".
// TODO: We could use this to optimize the region further, e.g., intersect
// the context with
// isl_set_complement(isl_set_params(getDomain()))
// as we know it would be undefined to execute this instruction anyway.
if (DestAccFunc->isZero())
return true;
auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
assert(DestPtrSCEV);
DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
addArrayAccess(Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
IntegerType::getInt8Ty(DestPtrVal->getContext()), false,
{DestAccFunc, LengthVal}, {}, Inst.getValueOperand());
auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
if (!MemTrans)
return true;
auto *SrcPtrVal = MemTrans->getSource();
assert(SrcPtrVal);
auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
assert(SrcAccFunc);
// Ignore accesses to "NULL".
// TODO: See above TODO
if (SrcAccFunc->isZero())
return true;
auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
assert(SrcPtrSCEV);
SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
addArrayAccess(Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
IntegerType::getInt8Ty(SrcPtrVal->getContext()), false,
{SrcAccFunc, LengthVal}, {}, Inst.getValueOperand());
return true;
}
bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, Loop *L) {
auto *CI = dyn_cast_or_null<CallInst>(Inst);
if (CI == nullptr)
return false;
if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI))
return true;
bool ReadOnly = false;
auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
auto *CalledFunction = CI->getCalledFunction();
switch (AA.getModRefBehavior(CalledFunction)) {
case llvm::FMRB_UnknownModRefBehavior:
llvm_unreachable("Unknown mod ref behaviour cannot be represented.");
case llvm::FMRB_DoesNotAccessMemory:
return true;
case llvm::FMRB_OnlyReadsMemory:
GlobalReads.push_back(CI);
return true;
case llvm::FMRB_OnlyReadsArgumentPointees:
ReadOnly = true;
// Fall through
case llvm::FMRB_OnlyAccessesArgumentPointees:
auto AccType = ReadOnly ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
for (const auto &Arg : CI->arg_operands()) {
if (!Arg->getType()->isPointerTy())
continue;
auto *ArgSCEV = SE.getSCEVAtScope(Arg, L);
if (ArgSCEV->isZero())
continue;
auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
addArrayAccess(Inst, AccType, ArgBasePtr->getValue(),
ArgBasePtr->getType(), false, {AF}, {}, CI);
}
return true;
}
return true;
}
void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, Loop *L) {
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction = SE.getSCEVAtScope(Address, L);
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);
// Check if the access depends on a loop contained in a non-affine subregion.
bool isVariantInNonAffineLoop = false;
SetVector<const Loop *> Loops;
auto &BoxedLoops = scop->getBoxedLoops();
findLoops(AccessFunction, Loops);
for (const Loop *L : Loops)
if (BoxedLoops.count(L))
isVariantInNonAffineLoop = true;
InvariantLoadsSetTy AccessILS;
bool IsAffine =
!isVariantInNonAffineLoop &&
isAffineExpr(&scop->getRegion(), L, AccessFunction, SE, &AccessILS);
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
IsAffine = false;
if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
addArrayAccess(Inst, AccType, BasePointer->getValue(), ElementType, IsAffine,
{AccessFunction}, {}, Val);
}
void ScopBuilder::buildMemoryAccess(MemAccInst Inst, Loop *L) {
if (buildAccessMemIntrinsic(Inst, L))
return;
if (buildAccessCallInst(Inst, L))
return;
if (buildAccessMultiDimFixed(Inst, L))
return;
if (buildAccessMultiDimParam(Inst, L))
return;
buildAccessSingleDim(Inst, L);
}
void ScopBuilder::buildAccessFunctions(Region &SR) {
if (scop->isNonAffineSubRegion(&SR)) {
for (BasicBlock *BB : SR.blocks())
buildAccessFunctions(*BB, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildAccessFunctions(*I->getNodeAs<Region>());
else
buildAccessFunctions(*I->getNodeAs<BasicBlock>());
}
void ScopBuilder::buildStmts(Region &SR) {
if (scop->isNonAffineSubRegion(&SR)) {
scop->addScopStmt(nullptr, &SR);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildStmts(*I->getNodeAs<Region>());
else
scop->addScopStmt(I->getNodeAs<BasicBlock>(), nullptr);
}
void ScopBuilder::buildAccessFunctions(BasicBlock &BB,
Region *NonAffineSubRegion,
bool IsExitBlock) {
// We do not build access functions for error blocks, as they may contain
// instructions we can not model.
if (isErrorBlock(BB, scop->getRegion(), LI, DT) && !IsExitBlock)
return;
Loop *L = LI.getLoopFor(&BB);
for (Instruction &Inst : BB) {
PHINode *PHI = dyn_cast<PHINode>(&Inst);
if (PHI)
buildPHIAccesses(PHI, NonAffineSubRegion, IsExitBlock);
// For the exit block we stop modeling after the last PHI node.
if (!PHI && IsExitBlock)
break;
if (auto MemInst = MemAccInst::dyn_cast(Inst))
buildMemoryAccess(MemInst, L);
if (isIgnoredIntrinsic(&Inst))
continue;
// PHI nodes have already been modeled above and TerminatorInsts that are
// not part of a non-affine subregion are fully modeled and regenerated
// from the polyhedral domains. Hence, they do not need to be modeled as
// explicit data dependences.
if (!PHI && (!isa<TerminatorInst>(&Inst) || NonAffineSubRegion))
buildScalarDependences(&Inst);
if (!IsExitBlock)
buildEscapingDependences(&Inst);
}
}
MemoryAccess *ScopBuilder::addMemoryAccess(
BasicBlock *BB, Instruction *Inst, MemoryAccess::AccessType AccType,
Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
ScopArrayInfo::MemoryKind Kind) {
ScopStmt *Stmt = scop->getStmtFor(BB);
// Do not create a memory access for anything not in the SCoP. It would be
// ignored anyway.
if (!Stmt)
return nullptr;
AccFuncSetType &AccList = scop->getOrCreateAccessFunctions(BB);
Value *BaseAddr = BaseAddress;
std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, "");
bool isKnownMustAccess = false;
// Accesses in single-basic block statements are always excuted.
if (Stmt->isBlockStmt())
isKnownMustAccess = true;
if (Stmt->isRegionStmt()) {
// Accesses that dominate the exit block of a non-affine region are always
// executed. In non-affine regions there may exist MK_Values that do not
// dominate the exit. MK_Values will always dominate the exit and MK_PHIs
// only if there is at most one PHI_WRITE in the non-affine region.
if (DT.dominates(BB, Stmt->getRegion()->getExit()))
isKnownMustAccess = true;
}
// Non-affine PHI writes do not "happen" at a particular instruction, but
// after exiting the statement. Therefore they are guaranteed execute and
// overwrite the old value.
if (Kind == ScopArrayInfo::MK_PHI || Kind == ScopArrayInfo::MK_ExitPHI)
isKnownMustAccess = true;
if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
AccList.emplace_back(Stmt, Inst, AccType, BaseAddress, ElementType, Affine,
Subscripts, Sizes, AccessValue, Kind, BaseName);
Stmt->addAccess(&AccList.back());
return &AccList.back();
}
void ScopBuilder::addArrayAccess(
MemAccInst MemAccInst, MemoryAccess::AccessType AccType, Value *BaseAddress,
Type *ElementType, bool IsAffine, ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes, Value *AccessValue) {
ArrayBasePointers.insert(BaseAddress);
addMemoryAccess(MemAccInst->getParent(), MemAccInst, AccType, BaseAddress,
ElementType, IsAffine, AccessValue, Subscripts, Sizes,
ScopArrayInfo::MK_Array);
}
void ScopBuilder::ensureValueWrite(Instruction *Inst) {
ScopStmt *Stmt = scop->getStmtFor(Inst);
// Inst not defined within this SCoP.
if (!Stmt)
return;
// Do not process further if the instruction is already written.
if (Stmt->lookupValueWriteOf(Inst))
return;
addMemoryAccess(Inst->getParent(), Inst, MemoryAccess::MUST_WRITE, Inst,
Inst->getType(), true, Inst, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), ScopArrayInfo::MK_Value);
}
void ScopBuilder::ensureValueRead(Value *V, BasicBlock *UserBB) {
// There cannot be an "access" for literal constants. BasicBlock references
// (jump destinations) also never change.
if ((isa<Constant>(V) && !isa<GlobalVariable>(V)) || isa<BasicBlock>(V))
return;
// If the instruction can be synthesized and the user is in the region we do
// not need to add a value dependences.
auto *Scope = LI.getLoopFor(UserBB);
if (canSynthesize(V, *scop, &LI, &SE, Scope))
return;
// Do not build scalar dependences for required invariant loads as we will
// hoist them later on anyway or drop the SCoP if we cannot.
auto &ScopRIL = scop->getRequiredInvariantLoads();
if (ScopRIL.count(dyn_cast<LoadInst>(V)))
return;
// Determine the ScopStmt containing the value's definition and use. There is
// no defining ScopStmt if the value is a function argument, a global value,
// or defined outside the SCoP.
Instruction *ValueInst = dyn_cast<Instruction>(V);
ScopStmt *ValueStmt = ValueInst ? scop->getStmtFor(ValueInst) : nullptr;
ScopStmt *UserStmt = scop->getStmtFor(UserBB);
// We do not model uses outside the scop.
if (!UserStmt)
return;
// Add MemoryAccess for invariant values only if requested.
if (!ModelReadOnlyScalars && !ValueStmt)
return;
// Ignore use-def chains within the same ScopStmt.
if (ValueStmt == UserStmt)
return;
// Do not create another MemoryAccess for reloading the value if one already
// exists.
if (UserStmt->lookupValueReadOf(V))
return;
// For exit PHIs use the MK_ExitPHI MemoryKind not MK_Value.
ScopArrayInfo::MemoryKind Kind = ScopArrayInfo::MK_Value;
if (!ValueStmt && isa<PHINode>(V))
Kind = ScopArrayInfo::MK_ExitPHI;
addMemoryAccess(UserBB, nullptr, MemoryAccess::READ, V, V->getType(), true, V,
ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(), Kind);
if (ValueInst)
ensureValueWrite(ValueInst);
}
void ScopBuilder::ensurePHIWrite(PHINode *PHI, BasicBlock *IncomingBlock,
Value *IncomingValue, bool IsExitBlock) {
// As the incoming block might turn out to be an error statement ensure we
// will create an exit PHI SAI object. It is needed during code generation
// and would be created later anyway.
if (IsExitBlock)
scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
ScopArrayInfo::MK_ExitPHI);
ScopStmt *IncomingStmt = scop->getStmtFor(IncomingBlock);
if (!IncomingStmt)
return;
// Take care for the incoming value being available in the incoming block.
// This must be done before the check for multiple PHI writes because multiple
// exiting edges from subregion each can be the effective written value of the
// subregion. As such, all of them must be made available in the subregion
// statement.
ensureValueRead(IncomingValue, IncomingBlock);
// Do not add more than one MemoryAccess per PHINode and ScopStmt.
if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
assert(Acc->getAccessInstruction() == PHI);
Acc->addIncoming(IncomingBlock, IncomingValue);
return;
}
MemoryAccess *Acc = addMemoryAccess(
IncomingStmt->getEntryBlock(), PHI, MemoryAccess::MUST_WRITE, PHI,
PHI->getType(), true, PHI, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(),
IsExitBlock ? ScopArrayInfo::MK_ExitPHI : ScopArrayInfo::MK_PHI);
assert(Acc);
Acc->addIncoming(IncomingBlock, IncomingValue);
}
void ScopBuilder::addPHIReadAccess(PHINode *PHI) {
addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI,
PHI->getType(), true, PHI, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), ScopArrayInfo::MK_PHI);
}
void ScopBuilder::buildScop(Region &R, AssumptionCache &AC) {
scop.reset(new Scop(R, SE, LI, *SD.getDetectionContext(&R)));
buildStmts(R);
buildAccessFunctions(R);
// In case the region does not have an exiting block we will later (during
// code generation) split the exit block. This will move potential PHI nodes
// from the current exit block into the new region exiting block. Hence, PHI
// nodes that are at this point not part of the region will be.
// To handle these PHI nodes later we will now model their operands as scalar
// accesses. Note that we do not model anything in the exit block if we have
// an exiting block in the region, as there will not be any splitting later.
if (!scop->hasSingleExitEdge())
buildAccessFunctions(*R.getExit(), nullptr,
/* IsExitBlock */ true);
// Create memory accesses for global reads since all arrays are now known.
auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
for (auto *GlobalRead : GlobalReads)
for (auto *BP : ArrayBasePointers)
addArrayAccess(MemAccInst(GlobalRead), MemoryAccess::READ, BP,
BP->getType(), false, {AF}, {}, GlobalRead);
scop->init(AA, AC, DT, LI);
}
ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
ScopDetection &SD, ScalarEvolution &SE)
: AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE) {
Function *F = R->getEntry()->getParent();
DebugLoc Beg, End;
getDebugLocations(getBBPairForRegion(R), Beg, End);
std::string Msg = "SCoP begins here.";
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, Beg, Msg);
buildScop(*R, AC);
DEBUG(scop->print(dbgs()));
if (!scop->hasFeasibleRuntimeContext()) {
Msg = "SCoP ends here but was dismissed.";
scop.reset();
} else {
Msg = "SCoP ends here.";
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
}
emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, End, Msg);
}
//===----------------------------------------------------------------------===//
void ScopInfoRegionPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfoWrapperPass>();

View File

@ -29,6 +29,7 @@ add_polly_library(Polly
Analysis/ScopDetection.cpp
Analysis/ScopDetectionDiagnostic.cpp
Analysis/ScopInfo.cpp
Analysis/ScopBuilder.cpp
Analysis/ScopGraphPrinter.cpp
Analysis/ScopPass.cpp
CodeGen/BlockGenerators.cpp