Move valid caller-pc checks out of platform-specific checks

Summary:
ProcessPlatformSpecificAllocations for linux leak sanitizer iterated over
memory chunks and ran two checks concurrently:
1) Ensured the pc was valid
2) Checked whether it was a linker allocation

All platforms will need the valid pc check, so it is moved out of the platform-
specific file. To prevent code and logic duplication, the linker allocation
check is moved as well, with the name of the linker supplied by the platform-specific
module. In cases where we don't need to check for linker allocations (ie Darwin),
this name will be a nullptr, and we'll only run the caller pc checks.

Reviewers: kubamracek, alekseyshl, kcc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D32130

llvm-svn: 300690
This commit is contained in:
Francis Ricci 2017-04-19 14:00:35 +00:00
parent 8ea76fa9b4
commit 2096fa4bf9
4 changed files with 77 additions and 64 deletions

View File

@ -356,6 +356,72 @@ static void CollectIgnoredCb(uptr chunk, void *arg) {
}
}
static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
CHECK(stack_id);
StackTrace stack = map->Get(stack_id);
// The top frame is our malloc/calloc/etc. The next frame is the caller.
if (stack.size >= 2)
return stack.trace[1];
return 0;
}
struct InvalidPCParam {
Frontier *frontier;
StackDepotReverseMap *stack_depot_reverse_map;
bool skip_linker_allocations;
};
// ForEachChunk callback. If the caller pc is invalid or is within the linker,
// mark as reachable. Called by ProcessPlatformSpecificAllocations.
static void MarkInvalidPCCb(uptr chunk, void *arg) {
CHECK(arg);
InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
u32 stack_id = m.stack_trace_id();
uptr caller_pc = 0;
if (stack_id > 0)
caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
// If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
// it as reachable, as we can't properly report its allocation stack anyway.
if (caller_pc == 0 || (param->skip_linker_allocations &&
GetLinker()->containsAddress(caller_pc))) {
m.set_tag(kReachable);
param->frontier->push_back(chunk);
}
}
}
// On Linux, handles dynamically allocated TLS blocks by treating all chunks
// allocated from ld-linux.so as reachable.
// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
// They are allocated with a __libc_memalign() call in allocate_and_init()
// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
// blocks, but we can make sure they come from our own allocator by intercepting
// __libc_memalign(). On top of that, there is no easy way to reach them. Their
// addresses are stored in a dynamically allocated array (the DTV) which is
// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
// being reachable from the static TLS, and the dynamic TLS being reachable from
// the DTV. This is because the initial DTV is allocated before our interception
// mechanism kicks in, and thus we don't recognize it as allocated memory. We
// can't special-case it either, since we don't know its size.
// Our solution is to include in the root set all allocations made from
// ld-linux.so (which is where allocate_and_init() is implemented). This is
// guaranteed to include all dynamic TLS blocks (and possibly other allocations
// which we don't care about).
// On all other platforms, this simply checks to ensure that the caller pc is
// valid before reporting chunks as leaked.
void ProcessPC(Frontier *frontier) {
StackDepotReverseMap stack_depot_reverse_map;
InvalidPCParam arg;
arg.frontier = frontier;
arg.stack_depot_reverse_map = &stack_depot_reverse_map;
arg.skip_linker_allocations =
flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
ForEachChunk(MarkInvalidPCCb, &arg);
}
// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
@ -367,11 +433,13 @@ static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
ProcessRootRegions(&frontier);
FloodFillTag(&frontier, kReachable);
CHECK_EQ(0, frontier.size());
ProcessPC(&frontier);
// The check here is relatively expensive, so we do this in a separate flood
// fill. That way we can skip the check for chunks that are reachable
// otherwise.
LOG_POINTERS("Processing platform-specific allocations.\n");
CHECK_EQ(0, frontier.size());
ProcessPlatformSpecificAllocations(&frontier);
FloodFillTag(&frontier, kReachable);

View File

@ -212,6 +212,10 @@ uptr PointsIntoChunk(void *p);
uptr GetUserBegin(uptr chunk);
// Helper for __lsan_ignore_object().
IgnoreObjectResult IgnoreObjectLocked(const void *p);
// Return the linker module, if valid for the platform.
LoadedModule *GetLinker();
// Wrapper for chunk metadata operations.
class LsanMetadata {
public:

View File

@ -89,70 +89,9 @@ void ProcessGlobalRegions(Frontier *frontier) {
dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier);
}
static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
CHECK(stack_id);
StackTrace stack = map->Get(stack_id);
// The top frame is our malloc/calloc/etc. The next frame is the caller.
if (stack.size >= 2)
return stack.trace[1];
return 0;
}
LoadedModule *GetLinker() { return linker; }
struct ProcessPlatformAllocParam {
Frontier *frontier;
StackDepotReverseMap *stack_depot_reverse_map;
bool skip_linker_allocations;
};
// ForEachChunk callback. Identifies unreachable chunks which must be treated as
// reachable. Marks them as reachable and adds them to the frontier.
static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
CHECK(arg);
ProcessPlatformAllocParam *param =
reinterpret_cast<ProcessPlatformAllocParam *>(arg);
chunk = GetUserBegin(chunk);
LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
u32 stack_id = m.stack_trace_id();
uptr caller_pc = 0;
if (stack_id > 0)
caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
// If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
// it as reachable, as we can't properly report its allocation stack anyway.
if (caller_pc == 0 || (param->skip_linker_allocations &&
linker->containsAddress(caller_pc))) {
m.set_tag(kReachable);
param->frontier->push_back(chunk);
}
}
}
// Handles dynamically allocated TLS blocks by treating all chunks allocated
// from ld-linux.so as reachable.
// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
// They are allocated with a __libc_memalign() call in allocate_and_init()
// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
// blocks, but we can make sure they come from our own allocator by intercepting
// __libc_memalign(). On top of that, there is no easy way to reach them. Their
// addresses are stored in a dynamically allocated array (the DTV) which is
// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
// being reachable from the static TLS, and the dynamic TLS being reachable from
// the DTV. This is because the initial DTV is allocated before our interception
// mechanism kicks in, and thus we don't recognize it as allocated memory. We
// can't special-case it either, since we don't know its size.
// Our solution is to include in the root set all allocations made from
// ld-linux.so (which is where allocate_and_init() is implemented). This is
// guaranteed to include all dynamic TLS blocks (and possibly other allocations
// which we don't care about).
void ProcessPlatformSpecificAllocations(Frontier *frontier) {
StackDepotReverseMap stack_depot_reverse_map;
ProcessPlatformAllocParam arg;
arg.frontier = frontier;
arg.stack_depot_reverse_map = &stack_depot_reverse_map;
arg.skip_linker_allocations =
flags()->use_tls && flags()->use_ld_allocations && linker != nullptr;
ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg);
}
void ProcessPlatformSpecificAllocations(Frontier *frontier) {}
struct DoStopTheWorldParam {
StopTheWorldCallback callback;

View File

@ -87,6 +87,8 @@ void SetCurrentThread(u32 tid) { get_tls_val(true)->current_thread_id = tid; }
AllocatorCache *GetAllocatorCache() { return &get_tls_val(true)->cache; }
LoadedModule *GetLinker() { return nullptr; }
// Required on Linux for initialization of TLS behavior, but should not be
// required on Darwin.
void InitializePlatformSpecificModules() {