[asan/msan] new 32-bit allocator, basic functionality so far

llvm-svn: 169496
This commit is contained in:
Kostya Serebryany 2012-12-06 12:49:28 +00:00
parent 22dd8da6cd
commit 2044135dca
2 changed files with 182 additions and 20 deletions

View File

@ -128,6 +128,7 @@ class SizeClassAllocator64 {
} }
void *Allocate(uptr size, uptr alignment) { void *Allocate(uptr size, uptr alignment) {
if (size < alignment) size = alignment;
CHECK(CanAllocate(size, alignment)); CHECK(CanAllocate(size, alignment));
return AllocateBySizeClass(SizeClassMap::ClassID(size)); return AllocateBySizeClass(SizeClassMap::ClassID(size));
} }
@ -181,7 +182,7 @@ class SizeClassAllocator64 {
uptr chunk_idx = GetChunkIdx((uptr)p, size); uptr chunk_idx = GetChunkIdx((uptr)p, size);
uptr reg_beg = (uptr)p & ~(kRegionSize - 1); uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
uptr begin = reg_beg + chunk_idx * size; uptr begin = reg_beg + chunk_idx * size;
return (void*)begin; return reinterpret_cast<void*>(begin);
} }
static uptr GetActuallyAllocatedSize(void *p) { static uptr GetActuallyAllocatedSize(void *p) {
@ -220,7 +221,6 @@ class SizeClassAllocator64 {
private: private:
static const uptr kRegionSize = kSpaceSize / kNumClasses; static const uptr kRegionSize = kSpaceSize / kNumClasses;
COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0); COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses);
// kRegionSize must be >= 2^32. // kRegionSize must be >= 2^32.
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2))); COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
// Populate the free list with at most this number of bytes at once // Populate the free list with at most this number of bytes at once
@ -258,10 +258,10 @@ class SizeClassAllocator64 {
} }
void PopulateFreeList(uptr class_id, RegionInfo *region) { void PopulateFreeList(uptr class_id, RegionInfo *region) {
CHECK(region->free_list.empty());
uptr size = SizeClassMap::Size(class_id); uptr size = SizeClassMap::Size(class_id);
uptr beg_idx = region->allocated_user; uptr beg_idx = region->allocated_user;
uptr end_idx = beg_idx + kPopulateSize; uptr end_idx = beg_idx + kPopulateSize;
region->free_list.clear();
uptr region_beg = kSpaceBeg + kRegionSize * class_id; uptr region_beg = kSpaceBeg + kRegionSize * class_id;
uptr idx = beg_idx; uptr idx = beg_idx;
uptr i = 0; uptr i = 0;
@ -301,6 +301,161 @@ class SizeClassAllocator64 {
} }
}; };
// SizeClassAllocator32 -- allocator for 32-bit address space.
// This allocator can theoretically be used on 64-bit arch, but there it is less
// efficient than SizeClassAllocator64.
//
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
// be returned by MmapOrDie().
//
// Region:
// a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
// Since the regions are aligned by kRegionSize, there are exactly
// kNumPossibleRegions possible regions in the address space and so we keep
// an u8 array possible_regions_[kNumPossibleRegions] to store the size classes.
// 0 size class means the region is not used by the allocator.
//
// One Region is used to allocate chunks of a single size class.
// A Region looks like this:
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
//
// In order to avoid false sharing the objects of this class should be
// chache-line aligned.
template <const uptr kSpaceBeg, const u64 kSpaceSize,
const uptr kMetadataSize, class SizeClassMap>
class SizeClassAllocator32 {
public:
// Don't need to call Init if the object is a global (i.e. zero-initialized).
void Init() {
internal_memset(this, 0, sizeof(*this));
}
bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
}
void *Allocate(uptr size, uptr alignment) {
if (size < alignment) size = alignment;
CHECK(CanAllocate(size, alignment));
return AllocateBySizeClass(SizeClassMap::ClassID(size));
}
void Deallocate(void *p) {
CHECK(PointerIsMine(p));
DeallocateBySizeClass(p, GetSizeClass(p));
}
void *GetMetaData(void *p) {
CHECK(PointerIsMine(p));
uptr mem = reinterpret_cast<uptr>(p);
uptr beg = ComputeRegionBeg(mem);
uptr size = SizeClassMap::Size(GetSizeClass(p));
u32 offset = mem - beg;
uptr n = offset / (u32)size; // 32-bit division
uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
return (void*)meta;
}
bool PointerIsMine(void *p) {
return possible_regions_[ComputeRegionId(reinterpret_cast<uptr>(p))] != 0;
}
uptr GetSizeClass(void *p) {
return possible_regions_[ComputeRegionId(reinterpret_cast<uptr>(p))] - 1;
}
uptr GetActuallyAllocatedSize(void *p) {
CHECK(PointerIsMine(p));
return SizeClassMap::Size(GetSizeClass(p));
}
uptr TotalMemoryUsed() {
// No need to lock here.
uptr res = 0;
for (uptr i = 0; i < kNumPossibleRegions; i++)
if (possible_regions_[i])
res += kRegionSize;
return res;
}
void TestOnlyUnmap() {
for (uptr i = 0; i < kNumPossibleRegions; i++)
if (possible_regions_[i])
UnmapOrDie(reinterpret_cast<void*>(i * kRegionSize), kRegionSize);
}
typedef SizeClassMap SizeClassMapT;
static const uptr kNumClasses = SizeClassMap::kNumClasses; // 2^k <= 128
private:
static const uptr kRegionSizeLog = SANITIZER_WORDSIZE == 64 ? 24 : 20;
static const uptr kRegionSize = 1 << kRegionSizeLog;
static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
COMPILER_CHECK(kNumClasses <= 128);
struct SizeClassInfo {
SpinMutex mutex;
AllocatorFreeList free_list;
char padding[kCacheLineSize - sizeof(uptr) - sizeof (AllocatorFreeList)];
};
COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
uptr ComputeRegionId(uptr mem) {
uptr res = mem >> kRegionSizeLog;
CHECK_LT(res, kNumPossibleRegions);
return res;
}
uptr ComputeRegionBeg(uptr mem) {
return mem & ~(kRegionSize - 1);
}
uptr AllocateRegion(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
"SizeClassAllocator32"));
CHECK_EQ(0U, (res & (kRegionSize - 1)));
CHECK_EQ(0U, possible_regions_[ComputeRegionId(res)]);
possible_regions_[ComputeRegionId(res)] = class_id + 1;
return res;
}
SizeClassInfo *GetSizeClassInfo(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
return &size_class_info_array_[class_id];
}
void EnsureSizeClassHasAvailableChunks(SizeClassInfo *sci, uptr class_id) {
if (!sci->free_list.empty()) return;
uptr size = SizeClassMap::Size(class_id);
uptr reg = AllocateRegion(class_id);
uptr n_chunks = kRegionSize / (size + kMetadataSize);
for (uptr i = reg; i < reg + n_chunks * size; i += size)
sci->free_list.push_back(reinterpret_cast<AllocatorListNode*>(i));
}
void *AllocateBySizeClass(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
SizeClassInfo *sci = GetSizeClassInfo(class_id);
SpinMutexLock l(&sci->mutex);
EnsureSizeClassHasAvailableChunks(sci, class_id);
CHECK(!sci->free_list.empty());
AllocatorListNode *node = sci->free_list.front();
sci->free_list.pop_front();
return reinterpret_cast<void*>(node);
}
void DeallocateBySizeClass(void *p, uptr class_id) {
CHECK_LT(class_id, kNumClasses);
SizeClassInfo *sci = GetSizeClassInfo(class_id);
SpinMutexLock l(&sci->mutex);
sci->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
}
u8 possible_regions_[kNumPossibleRegions];
SizeClassInfo size_class_info_array_[kNumClasses];
};
// Objects of this type should be used as local caches for SizeClassAllocator64. // Objects of this type should be used as local caches for SizeClassAllocator64.
// Since the typical use of this class is to have one object per thread in TLS, // Since the typical use of this class is to have one object per thread in TLS,
// is has to be POD. // is has to be POD.

View File

@ -23,14 +23,20 @@
#if SANITIZER_WORDSIZE == 64 #if SANITIZER_WORDSIZE == 64
static const uptr kAllocatorSpace = 0x700000000000ULL; static const uptr kAllocatorSpace = 0x700000000000ULL;
static const uptr kAllocatorSize = 0x010000000000ULL; // 1T. static const uptr kAllocatorSize = 0x010000000000ULL; // 1T.
static const u64 kAddressSpaceSize = 1ULL << 47;
typedef SizeClassAllocator64< typedef SizeClassAllocator64<
kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap> Allocator64; kAllocatorSpace, kAllocatorSize, 16, DefaultSizeClassMap> Allocator64;
typedef SizeClassAllocator64< typedef SizeClassAllocator64<
kAllocatorSpace, kAllocatorSize, 16, CompactSizeClassMap> Allocator64Compact; kAllocatorSpace, kAllocatorSize, 16, CompactSizeClassMap> Allocator64Compact;
#else
static const u64 kAddressSpaceSize = 1ULL << 32;
#endif #endif
typedef SizeClassAllocator32<
0, kAddressSpaceSize, 16, CompactSizeClassMap> Allocator32Compact;
template <class SizeClassMap> template <class SizeClassMap>
void TestSizeClassMap() { void TestSizeClassMap() {
typedef SizeClassMap SCMap; typedef SizeClassMap SCMap;
@ -71,8 +77,8 @@ TEST(SanitizerCommon, CompactSizeClassMap) {
template <class Allocator> template <class Allocator>
void TestSizeClassAllocator() { void TestSizeClassAllocator() {
Allocator a; Allocator *a = new Allocator;
a.Init(); a->Init();
static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000, static const uptr sizes[] = {1, 16, 30, 40, 100, 1000, 10000,
50000, 60000, 100000, 300000, 500000, 1000000, 2000000}; 50000, 60000, 100000, 300000, 500000, 1000000, 2000000};
@ -82,19 +88,19 @@ void TestSizeClassAllocator() {
uptr last_total_allocated = 0; uptr last_total_allocated = 0;
for (int i = 0; i < 5; i++) { for (int i = 0; i < 5; i++) {
// Allocate a bunch of chunks. // Allocate a bunch of chunks.
for (uptr s = 0; s < sizeof(sizes) /sizeof(sizes[0]); s++) { for (uptr s = 0; s < ARRAY_SIZE(sizes); s++) {
uptr size = sizes[s]; uptr size = sizes[s];
if (!a.CanAllocate(size, 1)) continue; if (!a->CanAllocate(size, 1)) continue;
// printf("s = %ld\n", size); // printf("s = %ld\n", size);
uptr n_iter = std::max((uptr)2, 1000000 / size); uptr n_iter = std::max((uptr)2, 1000000 / size);
for (uptr i = 0; i < n_iter; i++) { for (uptr i = 0; i < n_iter; i++) {
void *x = a.Allocate(size, 1); void *x = a->Allocate(size, 1);
allocated.push_back(x); allocated.push_back(x);
CHECK(a.PointerIsMine(x)); CHECK(a->PointerIsMine(x));
CHECK_GE(a.GetActuallyAllocatedSize(x), size); CHECK_GE(a->GetActuallyAllocatedSize(x), size);
uptr class_id = a.GetSizeClass(x); uptr class_id = a->GetSizeClass(x);
CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size)); CHECK_EQ(class_id, Allocator::SizeClassMapT::ClassID(size));
uptr *metadata = reinterpret_cast<uptr*>(a.GetMetaData(x)); uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
metadata[0] = reinterpret_cast<uptr>(x) + 1; metadata[0] = reinterpret_cast<uptr>(x) + 1;
metadata[1] = 0xABCD; metadata[1] = 0xABCD;
} }
@ -102,19 +108,20 @@ void TestSizeClassAllocator() {
// Deallocate all. // Deallocate all.
for (uptr i = 0; i < allocated.size(); i++) { for (uptr i = 0; i < allocated.size(); i++) {
void *x = allocated[i]; void *x = allocated[i];
uptr *metadata = reinterpret_cast<uptr*>(a.GetMetaData(x)); uptr *metadata = reinterpret_cast<uptr*>(a->GetMetaData(x));
CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1); CHECK_EQ(metadata[0], reinterpret_cast<uptr>(x) + 1);
CHECK_EQ(metadata[1], 0xABCD); CHECK_EQ(metadata[1], 0xABCD);
a.Deallocate(x); a->Deallocate(x);
} }
allocated.clear(); allocated.clear();
uptr total_allocated = a.TotalMemoryUsed(); uptr total_allocated = a->TotalMemoryUsed();
if (last_total_allocated == 0) if (last_total_allocated == 0)
last_total_allocated = total_allocated; last_total_allocated = total_allocated;
CHECK_EQ(last_total_allocated, total_allocated); CHECK_EQ(last_total_allocated, total_allocated);
} }
a.TestOnlyUnmap(); a->TestOnlyUnmap();
delete a;
} }
#if SANITIZER_WORDSIZE == 64 #if SANITIZER_WORDSIZE == 64
@ -127,6 +134,10 @@ TEST(SanitizerCommon, SizeClassAllocator64Compact) {
} }
#endif #endif
TEST(SanitizerCommon, SizeClassAllocator32Compact) {
TestSizeClassAllocator<Allocator32Compact>();
}
template <class Allocator> template <class Allocator>
void SizeClassAllocator64MetadataStress() { void SizeClassAllocator64MetadataStress() {
Allocator a; Allocator a;
@ -181,7 +192,6 @@ TEST(SanitizerCommon, SizeClassAllocator64Overflow) {
#endif #endif
TEST(SanitizerCommon, LargeMmapAllocator) { TEST(SanitizerCommon, LargeMmapAllocator) {
fprintf(stderr, "xxxx %ld\n", 0L);
LargeMmapAllocator a; LargeMmapAllocator a;
a.Init(); a.Init();
@ -190,7 +200,6 @@ TEST(SanitizerCommon, LargeMmapAllocator) {
static const uptr size = 1000; static const uptr size = 1000;
// Allocate some. // Allocate some.
for (int i = 0; i < kNumAllocs; i++) { for (int i = 0; i < kNumAllocs; i++) {
fprintf(stderr, "zzz0 %ld\n", size);
allocated[i] = a.Allocate(size, 1); allocated[i] = a.Allocate(size, 1);
} }
// Deallocate all. // Deallocate all.
@ -205,7 +214,6 @@ TEST(SanitizerCommon, LargeMmapAllocator) {
// Allocate some more, also add metadata. // Allocate some more, also add metadata.
for (int i = 0; i < kNumAllocs; i++) { for (int i = 0; i < kNumAllocs; i++) {
fprintf(stderr, "zzz1 %ld\n", size);
void *x = a.Allocate(size, 1); void *x = a.Allocate(size, 1);
CHECK_GE(a.GetActuallyAllocatedSize(x), size); CHECK_GE(a.GetActuallyAllocatedSize(x), size);
uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x)); uptr *meta = reinterpret_cast<uptr*>(a.GetMetaData(x));
@ -227,7 +235,6 @@ TEST(SanitizerCommon, LargeMmapAllocator) {
for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) { for (uptr alignment = 8; alignment <= max_alignment; alignment *= 2) {
for (int i = 0; i < kNumAllocs; i++) { for (int i = 0; i < kNumAllocs; i++) {
uptr size = ((i % 10) + 1) * 4096; uptr size = ((i % 10) + 1) * 4096;
fprintf(stderr, "zzz1 %ld %ld\n", size, alignment);
allocated[i] = a.Allocate(size, alignment); allocated[i] = a.Allocate(size, alignment);
CHECK_EQ(0, (uptr)allocated[i] % alignment); CHECK_EQ(0, (uptr)allocated[i] % alignment);
char *p = (char*)allocated[i]; char *p = (char*)allocated[i];