Apply a level of sugaring to the linalg.generic EDSC - NFC

Make the declarative C++ builder API simpler to use so we can start chaining these ops together.

PiperOrigin-RevId: 285496266
This commit is contained in:
Nicolas Vasilache 2019-12-13 16:35:49 -08:00 committed by A. Unique TensorFlower
parent 7ac42fa26e
commit 200beb8446
3 changed files with 143 additions and 43 deletions

View File

@ -22,20 +22,82 @@
#ifndef MLIR_DIALECT_LINALG_EDSC_BUILDERS_H_
#define MLIR_DIALECT_LINALG_EDSC_BUILDERS_H_
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
namespace mlir {
class BlockArgument;
namespace edsc {
enum class IterType { Parallel, Reduction };
inline StringRef toString(IterType t) {
switch (t) {
case IterType::Parallel:
return getParallelIteratorTypeName();
case IterType::Reduction:
return getParallelIteratorTypeName();
default:
llvm_unreachable("Unsupport IterType");
}
}
/// A StructuredIndexed represents a captured value that can be indexed and
/// passed to the `makeLinalgGenericOp`. It allows writing intuitive index
/// expressions such as:
///
/// ```
/// StructuredIndexed A(vA), B(vB), C(vC);
/// makeLinalgGenericOp({A({m, n}), B({k, n})}, {C({m, n})}, ... );
/// ```
struct StructuredIndexed {
StructuredIndexed(Value *v) : value(v) {}
StructuredIndexed operator()(ArrayRef<AffineExpr> indexings) {
return StructuredIndexed(value, indexings);
}
operator Value *() const /* implicit */ { return value; }
ArrayRef<AffineExpr> getExprs() { return exprs; }
private:
StructuredIndexed(Value *v, ArrayRef<AffineExpr> indexings)
: value(v), exprs(indexings.begin(), indexings.end()) {
assert(v->getType().isa<MemRefType>() && "MemRefType expected");
}
StructuredIndexed(ValueHandle v, ArrayRef<AffineExpr> indexings)
: StructuredIndexed(v.getValue(), indexings) {}
Value *value;
SmallVector<AffineExpr, 4> exprs;
};
inline void defaultRegionBuilder(ArrayRef<BlockArgument *> args) {}
/// EDSC entry point to build linalg.generic operations programmatically.
Operation *makeLinalgGenericOp(
ArrayRef<AffineExpr> indices, ArrayRef<ArrayRef<AffineExpr>> mapExpressions,
ArrayRef<Value *> inputViews, ArrayRef<Value *> outputViews,
ArrayRef<StringRef> iteratorTypes,
decltype(defaultRegionBuilder) regionBuilder = defaultRegionBuilder);
ArrayRef<IterType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
ArrayRef<StructuredIndexed> outputs,
decltype(defaultRegionBuilder) regionBuilder = defaultRegionBuilder,
ArrayRef<Value *> otherValues = {},
ArrayRef<Attribute> otherAttributes = {});
//===----------------------------------------------------------------------===//
// EDSC builders for linalg generic operations.
//===----------------------------------------------------------------------===//
/// TODO(ntv): In the future we should tie these implementations to something in
/// Tablegen that generates the proper interfaces and the proper sugared named
/// ops.
/// Build a linalg.generic that represents C = A * B in the current
/// ScopedContext.
Operation *linalg_matmul(ValueHandle vA, ValueHandle vB, ValueHandle vC);
template <typename Container> Operation *linalg_matmul(Container values) {
assert(values.size() == 3 && "Expected exactly 3 values");
return linalg_matmul(values[0], values[1], values[2]);
}
} // namespace edsc
} // namespace mlir

View File

@ -15,50 +15,84 @@
// limitations under the License.
// =============================================================================
#include "mlir/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/Support/Functional.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
static void getMaxDimIndex(ArrayRef<StructuredIndexed> structuredIndices,
unsigned &pos) {
for (auto sidx : structuredIndices) {
for (auto expr : sidx.getExprs()) {
expr.walk([&pos](AffineExpr e) {
if (auto d = e.dyn_cast<AffineDimExpr>())
pos = std::max(pos, d.getPosition());
});
}
}
}
Operation *mlir::edsc::makeLinalgGenericOp(
ArrayRef<AffineExpr> indices, ArrayRef<ArrayRef<AffineExpr>> mapExpressions,
ArrayRef<Value *> inputViews, ArrayRef<Value *> outputViews,
ArrayRef<StringRef> iteratorTypes,
decltype(defaultRegionBuilder) regionBuilder) {
ArrayRef<IterType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
ArrayRef<StructuredIndexed> outputs,
decltype(defaultRegionBuilder) regionBuilder, ArrayRef<Value *> otherValues,
ArrayRef<Attribute> otherAttributes) {
auto &builder = edsc::ScopedContext::getBuilder();
auto *ctx = builder.getContext();
unsigned nInputs = inputs.size();
unsigned nOutputs = outputs.size();
unsigned rank = 0;
getMaxDimIndex(inputs, rank);
getMaxDimIndex(outputs, rank);
SmallVector<AffineMap, 4> maps;
maps.reserve(mapExpressions.size());
for (auto exprs : mapExpressions)
maps.push_back(AffineMap::get(indices.size(), 0, exprs));
maps.reserve(nInputs + nOutputs);
for (auto in : inputs)
maps.push_back(
AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, in.getExprs()));
for (auto out : outputs)
maps.push_back(
AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, out.getExprs()));
SmallVector<Value *, 4> views;
views.reserve(inputViews.size() + outputViews.size());
views.append(inputViews.begin(), inputViews.end());
views.append(outputViews.begin(), outputViews.end());
unsigned nViews = nInputs + nOutputs;
SmallVector<Value *, 4> values;
values.reserve(nViews);
values.append(inputs.begin(), inputs.end());
values.append(outputs.begin(), outputs.end());
auto iteratorStrTypes = functional::map(toString, iteratorTypes);
// clang-format off
auto *op =
edsc::ScopedContext::getBuilder()
.create<linalg::GenericOp>(
edsc::ScopedContext::getLocation(), views,
IntegerAttr::get(IntegerType::get(64, ctx), inputViews.size()),
IntegerAttr::get(IntegerType::get(64, ctx), outputViews.size()),
edsc::ScopedContext::getLocation(),
values,
IntegerAttr::get(IntegerType::get(64, ctx), nInputs),
IntegerAttr::get(IntegerType::get(64, ctx), nOutputs),
builder.getAffineMapArrayAttr(maps),
builder.getStrArrayAttr(iteratorTypes), StringAttr() /*doc*/,
FlatSymbolRefAttr() /*fun*/, StringAttr() /*library_call*/
builder.getStrArrayAttr(iteratorStrTypes),
StringAttr() /*doc*/,
FlatSymbolRefAttr() /*fun*/,
StringAttr() /*library_call*/
/* TODO: other attributes in op */
)
.getOperation();
// clang-format on
using namespace edsc;
SmallVector<Type, 4> blockTypes;
blockTypes.reserve(views.size());
for (auto *v : views)
blockTypes.push_back(getElementTypeOrSelf(v));
blockTypes.reserve(values.size());
for (auto it : llvm::enumerate(values))
blockTypes.push_back((it.index() < nViews)
? getElementTypeOrSelf(it.value())
: it.value()->getType());
assert(op->getRegions().front().empty());
op->getRegions().front().push_front(new Block);
@ -70,3 +104,24 @@ Operation *mlir::edsc::makeLinalgGenericOp(
[&] { regionBuilder(b.getBlock()->getArguments()); });
return op;
}
using linalg_yield = OperationBuilder<linalg::YieldOp>;
Operation *mlir::edsc::linalg_matmul(ValueHandle vA, ValueHandle vB,
ValueHandle vC) {
// clang-format off
AffineExpr m, n, k;
bindDims(ScopedContext::getContext(), m, n, k);
StructuredIndexed A(vA), B(vB), C(vC);
return makeLinalgGenericOp(
{IterType::Parallel, IterType::Parallel, IterType::Reduction},
{A({m, n}), B({k, n})},
{C({m, n})},
[](ArrayRef<BlockArgument *> args) {
using edsc::op::operator*;
using edsc::op::operator+;
ValueHandle a(args[0]), b(args[1]), c(args[2]);
linalg_yield((c + a * b).getValue());
});
// clang-format on
}

View File

@ -821,32 +821,15 @@ TEST_FUNC(affine_if_op) {
// clang-format on
TEST_FUNC(linalg_matmul) {
using namespace edsc;
using namespace edsc::intrinsics;
using namespace edsc::op;
using linalg_yield = OperationBuilder<linalg::YieldOp>;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get({-1, -1}, f32Type, {}, 0);
auto f =
makeFunction("linalg_matmul", {}, {memrefType, memrefType, memrefType});
// clang-format off
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value *A(f.getArgument(0)), *B(f.getArgument(1)), *C(f.getArgument(2));
AffineExpr m, n, k;
bindDims(f.getContext(), m, n, k);
makeLinalgGenericOp(
{m, n, k},
{{m, n}, {k, n}, {m, n}},
{A, B},
{C},
{"parallel", "parallel", "reduction"},
[](ArrayRef<BlockArgument *> args) {
ValueHandle a(args[0]), b(args[1]), c(args[2]);
linalg_yield((c + a * b).getValue());
});
// clang-format on
linalg_matmul(makeValueHandles(llvm::to_vector<3>(f.getArguments())));
f.print(llvm::outs());
f.erase();