Use uniforms set to populate VecValuesToIgnore.

For instructions in uniform set, they will not have vector versions so
add them to VecValuesToIgnore.
For induction vars, those only used in uniform instructions or consecutive
ptrs instructions have already been added to VecValuesToIgnore above. For
those induction vars which are only used in uniform instructions or
non-consecutive/non-gather scatter ptr instructions, the related phi and
update will also be added into VecValuesToIgnore set.

The change will make the vector RegUsages estimation less conservative.

Differential Revision: https://reviews.llvm.org/D20474

llvm-svn: 275912
This commit is contained in:
Wei Mi 2016-07-18 20:59:53 +00:00
parent 5f5eb58eb5
commit 1fd25726af
5 changed files with 133 additions and 63 deletions

View File

@ -6156,6 +6156,16 @@ bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
return false; return false;
} }
/// Take the pointer operand from the Load/Store instruction.
/// Returns NULL if this is not a valid Load/Store instruction.
static Value *getPointerOperand(Value *I) {
if (LoadInst *LI = dyn_cast<LoadInst>(I))
return LI->getPointerOperand();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
return nullptr;
}
void LoopVectorizationCostModel::collectValuesToIgnore() { void LoopVectorizationCostModel::collectValuesToIgnore() {
// Ignore ephemeral values. // Ignore ephemeral values.
CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
@ -6168,63 +6178,44 @@ void LoopVectorizationCostModel::collectValuesToIgnore() {
VecValuesToIgnore.insert(Casts.begin(), Casts.end()); VecValuesToIgnore.insert(Casts.begin(), Casts.end());
} }
// Ignore induction phis that are only used in either GetElementPtr or ICmp // Insert uniform instruction into VecValuesToIgnore.
// instruction to exit loop. Induction variables usually have large types and // Collect non-gather/scatter and non-consecutive ptr in NonConsecutivePtr.
// can have big impact when estimating register usage. SmallPtrSet<Instruction *, 8> NonConsecutivePtr;
// This is for when VF > 1. for (auto *BB : TheLoop->getBlocks()) {
for (auto &I : *BB) {
if (Legal->isUniformAfterVectorization(&I))
VecValuesToIgnore.insert(&I);
Instruction *PI = dyn_cast_or_null<Instruction>(getPointerOperand(&I));
if (PI && !Legal->isConsecutivePtr(PI) &&
!isGatherOrScatterLegal(&I, PI, Legal))
NonConsecutivePtr.insert(PI);
}
}
// Ignore induction phis that are either used in uniform instructions or
// NonConsecutivePtr.
for (auto &Induction : *Legal->getInductionVars()) { for (auto &Induction : *Legal->getInductionVars()) {
auto *PN = Induction.first; auto *PN = Induction.first;
auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch());
// Check that the PHI is only used by the induction increment (UpdateV) or if (std::all_of(PN->user_begin(), PN->user_end(),
// by GEPs. Then check that UpdateV is only used by a compare instruction, [&](User *U) -> bool {
// the loop header PHI, or by GEPs. Instruction *UI = dyn_cast<Instruction>(U);
// FIXME: Need precise def-use analysis to determine if this instruction return U == UpdateV || !TheLoop->contains(UI) ||
// variable will be vectorized. Legal->isUniformAfterVectorization(UI) ||
if (all_of(PN->users(), NonConsecutivePtr.count(UI);
[&](const User *U) -> bool { }) &&
return U == UpdateV || isa<GetElementPtrInst>(U); std::all_of(UpdateV->user_begin(), UpdateV->user_end(),
}) && [&](User *U) -> bool {
all_of(UpdateV->users(), [&](const User *U) -> bool { Instruction *UI = dyn_cast<Instruction>(U);
return U == PN || isa<ICmpInst>(U) || isa<GetElementPtrInst>(U); return U == PN || !TheLoop->contains(UI) ||
})) { Legal->isUniformAfterVectorization(UI) ||
NonConsecutivePtr.count(UI);
})) {
VecValuesToIgnore.insert(PN); VecValuesToIgnore.insert(PN);
VecValuesToIgnore.insert(UpdateV); VecValuesToIgnore.insert(UpdateV);
} }
} }
// Ignore instructions that will not be vectorized.
// This is for when VF > 1.
for (BasicBlock *BB : TheLoop->blocks()) {
for (auto &Inst : *BB) {
switch (Inst.getOpcode())
case Instruction::GetElementPtr: {
// Ignore GEP if its last operand is an induction variable so that it is
// a consecutive load/store and won't be vectorized as scatter/gather
// pattern.
GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst);
unsigned NumOperands = Gep->getNumOperands();
unsigned InductionOperand = getGEPInductionOperand(Gep);
bool GepToIgnore = true;
// Check that all of the gep indices are uniform except for the
// induction operand.
for (unsigned i = 0; i != NumOperands; ++i) {
if (i != InductionOperand &&
!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)),
TheLoop)) {
GepToIgnore = false;
break;
}
}
if (GepToIgnore)
VecValuesToIgnore.insert(&Inst);
break;
}
}
}
} }
void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,

View File

@ -43,7 +43,7 @@ for.end12: ; preds = %for.end, %entry
; CHECK-LABEL: @s173 ; CHECK-LABEL: @s173
; CHECK: load <4 x float>, <4 x float>* ; CHECK: load <4 x float>, <4 x float>*
; CHECK: add nsw i64 %1, 16000 ; CHECK: add i64 %index, 16000
; CHECK: ret i32 0 ; CHECK: ret i32 0
} }

View File

@ -7,7 +7,7 @@ target triple = "x86_64-apple-macosx10.9.0"
; loop. ; loop.
; CHECK-LABEL: f: ; CHECK-LABEL: f:
; CHECK: vmovdqu32 %zmm{{.}}, ( ; CHECK: vmovdqu32 %zmm{{.}},
; CHECK-NOT: %ymm ; CHECK-NOT: %ymm
define void @f(i32* %a, i32 %n) { define void @f(i32* %a, i32 %n) {

View File

@ -1,9 +1,7 @@
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -S 2>&1 | FileCheck %s ; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -S 2>&1 | FileCheck %s
; RUN: opt < %s -debug-only=loop-vectorize -loop-vectorize -vectorizer-maximize-bandwidth -O2 -mtriple=x86_64-unknown-linux -mattr=+avx512f -S 2>&1 | FileCheck %s --check-prefix=AVX512F
; REQUIRES: asserts ; REQUIRES: asserts
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
@a = global [1024 x i8] zeroinitializer, align 16 @a = global [1024 x i8] zeroinitializer, align 16
@b = global [1024 x i8] zeroinitializer, align 16 @b = global [1024 x i8] zeroinitializer, align 16
@ -45,6 +43,45 @@ for.body:
br i1 %exitcond, label %for.cond.cleanup, label %for.body br i1 %exitcond, label %for.cond.cleanup, label %for.body
} }
define i32 @goo() {
; For indvars.iv used in a computating chain only feeding into getelementptr or cmp,
; it will not have vector version and the vector register usage will not exceed the
; available vector register number.
; CHECK-LABEL: goo
; CHECK: LV(REG): VF = 4
; CHECK-NEXT: LV(REG): Found max usage: 4
; CHECK: LV(REG): VF = 8
; CHECK-NEXT: LV(REG): Found max usage: 7
; CHECK: LV(REG): VF = 16
; CHECK-NEXT: LV(REG): Found max usage: 13
entry:
br label %for.body
for.cond.cleanup: ; preds = %for.body
%add.lcssa = phi i32 [ %add, %for.body ]
ret i32 %add.lcssa
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%s.015 = phi i32 [ 0, %entry ], [ %add, %for.body ]
%tmp1 = add nsw i64 %indvars.iv, 3
%arrayidx = getelementptr inbounds [1024 x i8], [1024 x i8]* @a, i64 0, i64 %tmp1
%tmp = load i8, i8* %arrayidx, align 1
%conv = zext i8 %tmp to i32
%tmp2 = add nsw i64 %indvars.iv, 2
%arrayidx2 = getelementptr inbounds [1024 x i8], [1024 x i8]* @b, i64 0, i64 %tmp2
%tmp3 = load i8, i8* %arrayidx2, align 1
%conv3 = zext i8 %tmp3 to i32
%sub = sub nsw i32 %conv, %conv3
%ispos = icmp sgt i32 %sub, -1
%neg = sub nsw i32 0, %sub
%tmp4 = select i1 %ispos, i32 %sub, i32 %neg
%add = add nsw i32 %tmp4, %s.015
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body
}
define i64 @bar(i64* nocapture %a) { define i64 @bar(i64* nocapture %a) {
; CHECK-LABEL: bar ; CHECK-LABEL: bar
; CHECK: LV(REG): VF = 2 ; CHECK: LV(REG): VF = 2
@ -69,3 +106,34 @@ for.body:
%exitcond = icmp eq i64 %inc, 1024 %exitcond = icmp eq i64 %inc, 1024
br i1 %exitcond, label %for.cond.cleanup, label %for.body br i1 %exitcond, label %for.cond.cleanup, label %for.body
} }
@d = external global [0 x i64], align 8
@e = external global [0 x i32], align 4
@c = external global [0 x i32], align 4
define void @hoo(i32 %n) {
; For c[i] = e[d[i]] in the loop, e[d[i]] is not consecutive but its index %tmp can
; be gathered into a vector. For VF == 16, the vector version of %tmp will be <16 x i64>
; so the max usage of AVX512 vector register will be 2.
; AVX512F-LABEL: bar
; AVX512F: LV(REG): VF = 16
; AVX512F: LV(REG): Found max usage: 2
;
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arrayidx = getelementptr inbounds [0 x i64], [0 x i64]* @d, i64 0, i64 %indvars.iv
%tmp = load i64, i64* %arrayidx, align 8
%arrayidx1 = getelementptr inbounds [0 x i32], [0 x i32]* @e, i64 0, i64 %tmp
%tmp1 = load i32, i32* %arrayidx1, align 4
%arrayidx3 = getelementptr inbounds [0 x i32], [0 x i32]* @c, i64 0, i64 %indvars.iv
store i32 %tmp1, i32* %arrayidx3, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, 10000
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}

View File

@ -118,11 +118,16 @@ loopend:
; } ; }
; CHECK-LABEL: @reverse_forward_induction_i64_i8( ; CHECK-LABEL: @reverse_forward_induction_i64_i8(
; CHECK: vector.body
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %vec.ind = phi <4 x i64> [ <i64 1023, i64 1022, i64 1021, i64 1020>, %vector.ph ] ; CHECK: %offset.idx = sub i64 1023, %index
; CHECK: %step.add = add <4 x i64> %vec.ind, <i64 -4, i64 -4, i64 -4, i64 -4> ; CHECK: %[[a0:.+]] = add i64 %offset.idx, 0
; CHECK: trunc i64 %index to i8 ; CHECK: %[[a1:.+]] = add i64 %offset.idx, -1
; CHECK: %[[a2:.+]] = add i64 %offset.idx, -2
; CHECK: %[[a3:.+]] = add i64 %offset.idx, -3
; CHECK: %[[a4:.+]] = add i64 %offset.idx, -4
; CHECK: %[[a5:.+]] = add i64 %offset.idx, -5
; CHECK: %[[a6:.+]] = add i64 %offset.idx, -6
; CHECK: %[[a7:.+]] = add i64 %offset.idx, -7
define void @reverse_forward_induction_i64_i8() { define void @reverse_forward_induction_i64_i8() {
entry: entry:
@ -145,10 +150,16 @@ while.end:
} }
; CHECK-LABEL: @reverse_forward_induction_i64_i8_signed( ; CHECK-LABEL: @reverse_forward_induction_i64_i8_signed(
; CHECK: vector.body: ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ]
; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] ; CHECK: %offset.idx = sub i64 1023, %index
; CHECK: %vec.ind = phi <4 x i64> [ <i64 1023, i64 1022, i64 1021, i64 1020>, %vector.ph ] ; CHECK: %[[a0:.+]] = add i64 %offset.idx, 0
; CHECK: %step.add = add <4 x i64> %vec.ind, <i64 -4, i64 -4, i64 -4, i64 -4> ; CHECK: %[[a1:.+]] = add i64 %offset.idx, -1
; CHECK: %[[a2:.+]] = add i64 %offset.idx, -2
; CHECK: %[[a3:.+]] = add i64 %offset.idx, -3
; CHECK: %[[a4:.+]] = add i64 %offset.idx, -4
; CHECK: %[[a5:.+]] = add i64 %offset.idx, -5
; CHECK: %[[a6:.+]] = add i64 %offset.idx, -6
; CHECK: %[[a7:.+]] = add i64 %offset.idx, -7
define void @reverse_forward_induction_i64_i8_signed() { define void @reverse_forward_induction_i64_i8_signed() {
entry: entry: