diff --git a/llvm/lib/Analysis/ValueTracking.cpp b/llvm/lib/Analysis/ValueTracking.cpp index e80ee65abde8..f2740a6ceb41 100644 --- a/llvm/lib/Analysis/ValueTracking.cpp +++ b/llvm/lib/Analysis/ValueTracking.cpp @@ -201,9 +201,36 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, Depth+1); - assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); - assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); - + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); + assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (Mask.isNegative() && cast(I)->hasNoSignedWrap()) { + Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); + if (Op1 == Op2) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegative1 = KnownZero.isNegative(); + bool isKnownNonNegative2 = KnownZero2.isNegative(); + bool isKnownNegative1 = KnownOne.isNegative(); + bool isKnownNegative2 = KnownOne2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || + (isKnownNonNegative1 && isKnownNonNegative2); + // The product of a negative number and a non-negative number is either + // negative or zero. + isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && + isKnownNonZero(Op2, TD, Depth)) || + (isKnownNegative2 && isKnownNonNegative1 && + isKnownNonZero(Op1, TD, Depth)); + assert(!(isKnownNegative && isKnownNonNegative) && + "Sign bit both zero and one?"); + } + } + // If low bits are zero in either operand, output low known-0 bits. // Also compute a conserative estimate for high known-0 bits. // More trickiness is possible, but this is sufficient for the @@ -220,6 +247,12 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | APInt::getHighBitsSet(BitWidth, LeadZ); KnownZero &= Mask; + + if (isKnownNonNegative) + KnownZero.setBit(BitWidth - 1); + else if (isKnownNegative) + KnownOne.setBit(BitWidth - 1); + return; } case Instruction::UDiv: { @@ -767,7 +800,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { } // The remaining tests are all recursive, so bail out if we hit the limit. - if (Depth++ == MaxDepth) + if (Depth++ >= MaxDepth) return false; unsigned BitWidth = getBitWidth(V->getType(), TD); @@ -851,6 +884,15 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth)) return true; } + // X * Y. + else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { + BinaryOperator *BO = cast(V); + // If X and Y are non-zero then so is X * Y as long as the multiplication + // does not overflow. + if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && + isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) + return true; + } // (C ? X : Y) != 0 if X != 0 and Y != 0. else if (SelectInst *SI = dyn_cast(V)) { if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && diff --git a/llvm/test/Transforms/InstSimplify/compare.ll b/llvm/test/Transforms/InstSimplify/compare.ll index 2cbd641a7426..3ece11890251 100644 --- a/llvm/test/Transforms/InstSimplify/compare.ll +++ b/llvm/test/Transforms/InstSimplify/compare.ll @@ -323,3 +323,34 @@ define i1 @and1(i32 %X) { ret i1 %B ; CHECK: ret i1 false } + +define i1 @mul1(i32 %X) { +; CHECK: @mul1 +; Square of a non-zero number is non-zero if there is no overflow. + %Y = or i32 %X, 1 + %M = mul nuw i32 %Y, %Y + %C = icmp eq i32 %M, 0 + ret i1 %C +; CHECK: ret i1 false +} + +define i1 @mul2(i32 %X) { +; CHECK: @mul2 +; Square of a non-zero number is positive if there is no signed overflow. + %Y = or i32 %X, 1 + %M = mul nsw i32 %Y, %Y + %C = icmp sgt i32 %M, 0 + ret i1 %C +; CHECK: ret i1 true +} + +define i1 @mul3(i32 %X, i32 %Y) { +; CHECK: @mul3 +; Product of non-negative numbers is non-negative if there is no signed overflow. + %XX = mul nsw i32 %X, %X + %YY = mul nsw i32 %Y, %Y + %M = mul nsw i32 %XX, %YY + %C = icmp sge i32 %M, 0 + ret i1 %C +; CHECK: ret i1 true +}