forked from OSchip/llvm-project
This change is to fix rdar://12571717 which is about assertion in Reassociate pass.
The assertion is trigged when the Reassociater tries to transform expression ... + 2 * n * 3 + 2 * m + ... into: ... + 2 * (n*3 + m). In the process of the transformation, a helper routine folds the constant 2*3 into 6, confusing optimizer which is trying the to eliminate the common factor 2, and cannot find 2 any more. Review is pending. But I'd like commit first in order to help those who are waiting for this fix. llvm-svn: 167740
This commit is contained in:
parent
6bffd6fe81
commit
1c442f5ec6
|
@ -1,4 +1,4 @@
|
|||
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
|
||||
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
|
@ -41,6 +41,8 @@
|
|||
#include "llvm/Support/ValueHandle.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include <algorithm>
|
||||
#include <deque>
|
||||
#include <set>
|
||||
using namespace llvm;
|
||||
|
||||
STATISTIC(NumChanged, "Number of insts reassociated");
|
||||
|
@ -113,10 +115,148 @@ namespace {
|
|||
}
|
||||
|
||||
namespace {
|
||||
|
||||
class Reassociate;
|
||||
|
||||
class isInstDeadFunc {
|
||||
public:
|
||||
bool operator() (Instruction* I) {
|
||||
return isInstructionTriviallyDead(I);
|
||||
}
|
||||
};
|
||||
|
||||
class RmInstCallBackFunc {
|
||||
Reassociate *reassoc_;
|
||||
public:
|
||||
RmInstCallBackFunc(Reassociate* ra): reassoc_(ra) {}
|
||||
inline void operator() (Instruction*);
|
||||
};
|
||||
|
||||
// The worklist has following traits:
|
||||
// - it is pretty much a dequeue.
|
||||
// - has "set" semantic, meaning all elements in the worklist are distinct.
|
||||
// - efficient in-place element removal (by replacing the element with
|
||||
// invalid value 0).
|
||||
//
|
||||
class RedoWorklist {
|
||||
public:
|
||||
typedef AssertingVH<Instruction> value_type;
|
||||
typedef std::set<value_type> set_type;
|
||||
typedef std::deque<value_type> deque_type;
|
||||
// caller cannot modify element via iterator, hence constant.
|
||||
typedef deque_type::const_iterator iterator;
|
||||
typedef deque_type::const_iterator const_iterator;
|
||||
typedef deque_type::size_type size_type;
|
||||
|
||||
RedoWorklist() {}
|
||||
|
||||
bool empty() const {
|
||||
return deque_.empty();
|
||||
}
|
||||
|
||||
size_type size() const {
|
||||
return deque_.size();
|
||||
}
|
||||
|
||||
// return true iff X is in the worklist
|
||||
bool found(const value_type &X) {
|
||||
return set_.find(X) != set_.end();
|
||||
}
|
||||
|
||||
iterator begin() {
|
||||
return deque_.begin();
|
||||
}
|
||||
|
||||
const_iterator begin() const {
|
||||
return deque_.begin();
|
||||
}
|
||||
|
||||
iterator end() {
|
||||
return deque_.end();
|
||||
}
|
||||
|
||||
const_iterator end() const {
|
||||
return deque_.end();
|
||||
}
|
||||
|
||||
const value_type &back() const {
|
||||
assert(!empty() && "worklist is empty");
|
||||
return deque_.back();
|
||||
}
|
||||
|
||||
// If element X is already in the worklist, do nothing but return false;
|
||||
// otherwise, append X to the worklist and return true.
|
||||
//
|
||||
bool push_back(const value_type &X) {
|
||||
bool result = set_.insert(X).second;
|
||||
if (result)
|
||||
deque_.push_back(X);
|
||||
return result;
|
||||
}
|
||||
|
||||
// insert() is the alias of push_back()
|
||||
bool insert(const value_type &X) {
|
||||
return push_back(X);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
set_.clear();
|
||||
deque_.clear();
|
||||
}
|
||||
|
||||
void pop_back() {
|
||||
assert(!empty() && "worklist is empty");
|
||||
set_.erase(back());
|
||||
deque_.pop_back();
|
||||
}
|
||||
|
||||
value_type pop_back_val() {
|
||||
value_type Ret = back();
|
||||
pop_back();
|
||||
return Ret;
|
||||
}
|
||||
|
||||
const value_type &front() const {
|
||||
assert(!empty() && "worklist is empty");
|
||||
return deque_.front();
|
||||
}
|
||||
|
||||
void pop_front() {
|
||||
assert(!empty() && "worklist is empty");
|
||||
set_.erase(front());
|
||||
deque_.pop_front();
|
||||
}
|
||||
|
||||
value_type pop_front_val() {
|
||||
value_type Ret = front();
|
||||
pop_front();
|
||||
return Ret;
|
||||
}
|
||||
|
||||
// Remove an element from the worklist. Return true iff the element was
|
||||
// in the worklist.
|
||||
bool remove(const value_type& X);
|
||||
|
||||
template <typename pred, typename call_back_func>
|
||||
int inplace_remove(pred p, call_back_func cb);
|
||||
|
||||
template <typename pred, typename call_back_func>
|
||||
int inplace_rremove(pred p, call_back_func cb);
|
||||
|
||||
void append(RedoWorklist&);
|
||||
|
||||
private:
|
||||
set_type set_;
|
||||
deque_type deque_;
|
||||
};
|
||||
|
||||
class Reassociate : public FunctionPass {
|
||||
friend class RmInstCallBackFunc;
|
||||
|
||||
DenseMap<BasicBlock*, unsigned> RankMap;
|
||||
DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
|
||||
SetVector<AssertingVH<Instruction> > RedoInsts;
|
||||
RedoWorklist RedoInsts;
|
||||
RedoWorklist TmpRedoInsts;
|
||||
bool MadeChange;
|
||||
public:
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
|
@ -141,9 +281,12 @@ namespace {
|
|||
SmallVectorImpl<Factor> &Factors);
|
||||
Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
|
||||
SmallVectorImpl<Factor> &Factors);
|
||||
void removeNegFromMulOps(SmallVectorImpl<ValueEntry> &Ops);
|
||||
Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
|
||||
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
|
||||
void EraseInst(Instruction *I);
|
||||
void EraseInstCallBack(Instruction *I);
|
||||
void EraseAllDeadInst();
|
||||
void OptimizeInst(Instruction *I);
|
||||
};
|
||||
}
|
||||
|
@ -182,6 +325,75 @@ static bool isUnmovableInstruction(Instruction *I) {
|
|||
return false;
|
||||
}
|
||||
|
||||
inline void RmInstCallBackFunc::operator() (Instruction* I) {
|
||||
reassoc_->EraseInstCallBack(I);
|
||||
}
|
||||
|
||||
// Remove an item from the worklist. Return true iff the element was
|
||||
// in the worklist.
|
||||
bool RedoWorklist::remove(const value_type& X) {
|
||||
if (set_.erase(X)) {
|
||||
deque_type::iterator I = std::find(deque_.begin(), deque_.end(), X);
|
||||
assert(I != deque_.end() && "Can not find element");
|
||||
deque_.erase(I);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Forward go through each element e, calling p(e) to tell if e should be
|
||||
// removed or not; if p(e) = true, then e will be replaced with NULL to
|
||||
// indicate it is removed from the worklist, and functor cb will be
|
||||
// called for further processing on e. The functors should not invalidate
|
||||
// the iterator by inserting or deleteing element to and from the worklist.
|
||||
//
|
||||
// Returns the number of instruction being deleted.
|
||||
template <typename pred, typename call_back_func>
|
||||
int RedoWorklist::inplace_remove(pred p, call_back_func cb) {
|
||||
int cnt = 0;
|
||||
for (typename deque_type::iterator iter = deque_.begin(),
|
||||
iter_e = deque_.end(); iter != iter_e; iter++) {
|
||||
value_type &element = *iter;
|
||||
if (p(element) && set_.erase(element)) {
|
||||
Instruction* t = element;
|
||||
element.~value_type();
|
||||
new (&element) value_type(NULL);
|
||||
cb(t);
|
||||
cnt ++;
|
||||
}
|
||||
}
|
||||
return cnt;
|
||||
}
|
||||
|
||||
// inplace_rremove() is the same as inplace_remove() except that elements
|
||||
// are visited in backward order.
|
||||
template <typename pred, typename call_back_func>
|
||||
int RedoWorklist::inplace_rremove(pred p, call_back_func cb) {
|
||||
int cnt = 0;
|
||||
for (typename deque_type::reverse_iterator iter = deque_.rbegin(),
|
||||
iter_e = deque_.rend(); iter != iter_e; iter++) {
|
||||
value_type &element = *iter;
|
||||
if (p(element) && set_.erase(element)) {
|
||||
Instruction* t = element;
|
||||
element.~value_type();
|
||||
new (&element) value_type(NULL);
|
||||
cb(t);
|
||||
cnt ++;
|
||||
}
|
||||
}
|
||||
return cnt;
|
||||
}
|
||||
|
||||
void RedoWorklist::append(RedoWorklist& that) {
|
||||
deque_type &that_deque = that.deque_;
|
||||
|
||||
while (!that_deque.empty()) {
|
||||
push_back(that_deque.front());
|
||||
that_deque.pop_front();
|
||||
}
|
||||
that.clear();
|
||||
}
|
||||
|
||||
void Reassociate::BuildRankMap(Function &F) {
|
||||
unsigned i = 2;
|
||||
|
||||
|
@ -1418,8 +1630,66 @@ Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
|
|||
return V;
|
||||
}
|
||||
|
||||
// Multiply Ops may have some negation operators. This situation arises
|
||||
// when the negation operators have multiple uses, and LinearizeExprTree() has
|
||||
// to treat them as leaf operands. Before multiplication optimization begins,
|
||||
// get rid of the negations wherever possible.
|
||||
void Reassociate::removeNegFromMulOps(SmallVectorImpl<ValueEntry> &Ops) {
|
||||
int32_t NegIdx = -1;
|
||||
|
||||
// loop over all elements except the last one
|
||||
for (int32_t Idx = 0, IdxEnd = Ops.size() - 1; Idx < IdxEnd; Idx++) {
|
||||
ValueEntry &VE = Ops[Idx];
|
||||
if (!BinaryOperator::isNeg(VE.Op))
|
||||
continue;
|
||||
|
||||
if (NegIdx < 0) {
|
||||
NegIdx = Idx;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Find a pair of negation operators, say -X and -Y, change them to
|
||||
// X and Y respectively.
|
||||
ValueEntry &VEX = Ops[NegIdx];
|
||||
Value *OpX = cast<BinaryOperator>(VEX.Op)->getOperand(1);
|
||||
VEX.Op = OpX;
|
||||
VEX.Rank = getRank(OpX);
|
||||
|
||||
Value *OpY = cast<BinaryOperator>(VE.Op)->getOperand(1);
|
||||
VE.Op = OpY;
|
||||
VE.Rank = getRank(OpY);
|
||||
NegIdx = -1;
|
||||
}
|
||||
|
||||
if (NegIdx >= 0) {
|
||||
// We have visited odd number of negation operators so far.
|
||||
// Check if the last element is negation as well.
|
||||
ValueEntry &Last = Ops.back();
|
||||
Value *LastOp = Last.Op;
|
||||
if (!isa<ConstantInt>(LastOp) && !BinaryOperator::isNeg(LastOp))
|
||||
return;
|
||||
|
||||
ValueEntry& PrevNeg = Ops[NegIdx];
|
||||
Value *Op = cast<BinaryOperator>(PrevNeg.Op)->getOperand(1);
|
||||
PrevNeg.Op = Op;
|
||||
PrevNeg.Rank = getRank(Op);
|
||||
|
||||
if (isa<ConstantInt>(LastOp))
|
||||
Last.Op = ConstantExpr::getNeg(cast<Constant>(LastOp));
|
||||
else {
|
||||
LastOp = cast<BinaryOperator>(PrevNeg.Op)->getOperand(1);
|
||||
Last.Op = LastOp;
|
||||
Last.Rank = getRank(LastOp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Value *Reassociate::OptimizeMul(BinaryOperator *I,
|
||||
SmallVectorImpl<ValueEntry> &Ops) {
|
||||
|
||||
// Simplify the operands: (-x)*(-y) -> x*y, and (-x)*c -> x*(-c)
|
||||
removeNegFromMulOps(Ops);
|
||||
|
||||
// We can only optimize the multiplies when there is a chain of more than
|
||||
// three, such that a balanced tree might require fewer total multiplies.
|
||||
if (Ops.size() < 4)
|
||||
|
@ -1478,14 +1748,17 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/// EraseInst - Zap the given instruction, adding interesting operands to the
|
||||
/// work list.
|
||||
void Reassociate::EraseInst(Instruction *I) {
|
||||
// EraseInstCallBack is a helper function of EraseInst which will be called to
|
||||
// delete an individual instruction, and it is also a callback funciton when
|
||||
// EraseAllDeadInst is called to delete all dead instruciton in the Redo
|
||||
// worklist (RedoInsts).
|
||||
//
|
||||
void Reassociate::EraseInstCallBack(Instruction *I) {
|
||||
DEBUG(dbgs() << "Erase instruction :" << *I << "\n");
|
||||
assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
|
||||
SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
|
||||
// Erase the dead instruction.
|
||||
ValueRankMap.erase(I);
|
||||
RedoInsts.remove(I);
|
||||
I->eraseFromParent();
|
||||
// Optimize its operands.
|
||||
SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
|
||||
|
@ -1497,10 +1770,36 @@ void Reassociate::EraseInst(Instruction *I) {
|
|||
while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
|
||||
Visited.insert(Op))
|
||||
Op = Op->use_back();
|
||||
RedoInsts.insert(Op);
|
||||
|
||||
// The caller may be itearating the RedoInsts. Inserting a new element to
|
||||
// RedoInsts will invaidate the iterator. Instead, we temporally place the
|
||||
// new candidate to TmpRedoInsts. It is up to caller to combine
|
||||
// TmpRedoInsts and RedoInsts together.
|
||||
//
|
||||
if (!RedoInsts.found(Op))
|
||||
TmpRedoInsts.insert(Op);
|
||||
}
|
||||
}
|
||||
|
||||
/// EraseInst - Zap the given instruction, adding interesting operands to the
|
||||
/// work list.
|
||||
void Reassociate::EraseInst(Instruction *I) {
|
||||
RedoInsts.remove(I);
|
||||
|
||||
// Since EraseInstCallBack() put new reassociation candidates to TmpRedoInsts
|
||||
// we need to copy the candidates back to RedoInsts.
|
||||
TmpRedoInsts.clear();
|
||||
EraseInstCallBack(I);
|
||||
RedoInsts.append(TmpRedoInsts);
|
||||
}
|
||||
|
||||
/// EraseAllDeadInst - Remove all dead instructions from the worklist.
|
||||
void Reassociate::EraseAllDeadInst() {
|
||||
TmpRedoInsts.clear();
|
||||
RedoInsts.inplace_rremove(isInstDeadFunc(), RmInstCallBackFunc(this));
|
||||
RedoInsts.append(TmpRedoInsts);
|
||||
}
|
||||
|
||||
/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
|
||||
/// instructions is not allowed.
|
||||
void Reassociate::OptimizeInst(Instruction *I) {
|
||||
|
@ -1508,6 +1807,8 @@ void Reassociate::OptimizeInst(Instruction *I) {
|
|||
if (!isa<BinaryOperator>(I))
|
||||
return;
|
||||
|
||||
DEBUG(dbgs() << "\n>Opt Instruction: " << *I << '\n');
|
||||
|
||||
if (I->getOpcode() == Instruction::Shl &&
|
||||
isa<ConstantInt>(I->getOperand(1)))
|
||||
// If an operand of this shift is a reassociable multiply, or if the shift
|
||||
|
@ -1686,9 +1987,14 @@ bool Reassociate::runOnFunction(Function &F) {
|
|||
++II;
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Process instructions in worklist\n");
|
||||
EraseAllDeadInst();
|
||||
|
||||
// If this produced extra instructions to optimize, handle them now.
|
||||
while (!RedoInsts.empty()) {
|
||||
Instruction *I = RedoInsts.pop_back_val();
|
||||
Instruction *I = RedoInsts.pop_front_val();
|
||||
if (!I)
|
||||
continue;
|
||||
if (isInstructionTriviallyDead(I))
|
||||
EraseInst(I);
|
||||
else
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
; RUN: opt -S -reassociate < %s | FileCheck %s
|
||||
|
||||
; t=-a; retval = t*7|t => t-a; retval => a*-7|t
|
||||
define i32 @mulneg(i32 %a) nounwind uwtable ssp {
|
||||
entry:
|
||||
%sub = sub nsw i32 0, %a
|
||||
%tmp1 = mul i32 %sub, 7
|
||||
%tmp2 = xor i32 %sub, %tmp1
|
||||
ret i32 %tmp2
|
||||
; CHECK: entry
|
||||
; CHECK: %tmp1 = mul i32 %a, -7
|
||||
; CHECK: ret
|
||||
}
|
|
@ -1,7 +1,7 @@
|
|||
; RUN: opt < %s -reassociate -S | FileCheck %s
|
||||
|
||||
define i64 @multistep1(i64 %a, i64 %b, i64 %c) {
|
||||
; Check that a*a*b+a*a*c is turned into a*(a*(b+c)).
|
||||
; Check that a*a*b+a*a*c is turned into (a*a)*(b+c).
|
||||
; CHECK: @multistep1
|
||||
%t0 = mul i64 %a, %b
|
||||
%t1 = mul i64 %a, %t0 ; a*(a*b)
|
||||
|
@ -9,8 +9,8 @@ define i64 @multistep1(i64 %a, i64 %b, i64 %c) {
|
|||
%t3 = mul i64 %a, %t2 ; a*(a*c)
|
||||
%t4 = add i64 %t1, %t3
|
||||
; CHECK-NEXT: add i64 %c, %b
|
||||
; CHECK-NEXT: mul i64 %tmp{{.*}}, %a
|
||||
; CHECK-NEXT: mul i64 %tmp{{.*}}, %a
|
||||
; CHECK-NEXT: mul i64 %a, %a
|
||||
; CHECK-NEXT: mul i64 %tmp{{.*}}, %tmp{{.*}}
|
||||
; CHECK-NEXT: ret
|
||||
ret i64 %t4
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue