This is a prototype of an experimental register allocation

framework. It's purpose is not to improve register allocation per se,
but to make it easier to develop powerful live range splitting. I call
it the basic allocator because it is as simple as a global allocator
can be but provides the building blocks for sophisticated register
allocation with live range splitting. 

A minimal implementation is provided that trivially spills whenever it
runs out of registers. I'm checking in now to get high-level design
and style feedback. I've only done minimal testing. The next step is
implementing a "greedy" allocation algorithm that does some register
reassignment and makes better splitting decisions.

llvm-svn: 117174
This commit is contained in:
Andrew Trick 2010-10-22 23:09:15 +00:00
parent cb5c1b75fe
commit 1c24605a57
8 changed files with 807 additions and 1 deletions

View File

@ -34,6 +34,7 @@ namespace {
(void) llvm::createDeadMachineInstructionElimPass(); (void) llvm::createDeadMachineInstructionElimPass();
(void) llvm::createFastRegisterAllocator(); (void) llvm::createFastRegisterAllocator();
(void) llvm::createBasicRegisterAllocator();
(void) llvm::createLinearScanRegisterAllocator(); (void) llvm::createLinearScanRegisterAllocator();
(void) llvm::createDefaultPBQPRegisterAllocator(); (void) llvm::createDefaultPBQPRegisterAllocator();

View File

@ -95,6 +95,11 @@ namespace llvm {
/// ///
FunctionPass *createFastRegisterAllocator(); FunctionPass *createFastRegisterAllocator();
/// BasicRegisterAllocation Pass - This pass implements a degenerate global
/// register allocator using the basic regalloc framework.
///
FunctionPass *createBasicRegisterAllocator();
/// LinearScanRegisterAllocation Pass - This pass implements the linear scan /// LinearScanRegisterAllocation Pass - This pass implements the linear scan
/// register allocation algorithm, a global register allocator. /// register allocation algorithm, a global register allocator.
/// ///

View File

@ -21,6 +21,7 @@ add_llvm_library(LLVMCodeGen
LatencyPriorityQueue.cpp LatencyPriorityQueue.cpp
LiveInterval.cpp LiveInterval.cpp
LiveIntervalAnalysis.cpp LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
LiveStackAnalysis.cpp LiveStackAnalysis.cpp
LiveVariables.cpp LiveVariables.cpp
LiveRangeEdit.cpp LiveRangeEdit.cpp
@ -55,6 +56,7 @@ add_llvm_library(LLVMCodeGen
ProcessImplicitDefs.cpp ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp PrologEpilogInserter.cpp
PseudoSourceValue.cpp PseudoSourceValue.cpp
RegAllocBasic.cpp
RegAllocFast.cpp RegAllocFast.cpp
RegAllocLinearScan.cpp RegAllocLinearScan.cpp
RegAllocPBQP.cpp RegAllocPBQP.cpp

View File

@ -0,0 +1,167 @@
//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// LiveIntervalUnion represents a coalesced set of live intervals. This may be
// used during coalescing to represent a congruence class, or during register
// allocation to model liveness of a physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
// Merge a LiveInterval's segments. Guarantee no overlaps.
void LiveIntervalUnion::unify(LiveInterval &lvr) {
// Add this live virtual register to the union
LiveVirtRegs::iterator pos = std::upper_bound(lvrs_.begin(), lvrs_.end(),
&lvr, less_ptr<LiveInterval>());
assert(pos == lvrs_.end() || *pos != &lvr && "duplicate LVR insertion");
lvrs_.insert(pos, &lvr);
// Insert each of the virtual register's live segments into the map
SegmentIter segPos = segments_.begin();
for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
lvrI != lvrEnd; ++lvrI ) {
LiveSegment segment(lvrI->start, lvrI->end, lvr);
segPos = segments_.insert(segPos, segment);
assert(*segPos == segment && "need equal val for equal key");
}
}
namespace {
// Keep LVRs sorted for fast membership test and extraction.
struct LessReg
: public std::binary_function<LiveInterval*, LiveInterval*, bool> {
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
return left->reg < right->reg;
}
};
// Low-level helper to find the first segment in the range [segI,segEnd) that
// intersects with a live virtual register segment, or segI.start >= lvr.end
//
// This logic is tied to the underlying LiveSegments data structure. For now, we
// use a binary search within the vector to find the nearest starting position,
// then reverse iterate to find the first overlap.
//
// Upon entry we have segI.start < lvrSeg.end
// seg |--...
// \ .
// lvr ...-|
//
// After binary search, we have segI.start >= lvrSeg.start:
// seg |--...
// /
// lvr |--...
//
// Assuming intervals are disjoint, if an intersection exists, it must be the
// segment found or immediately behind it. We continue reverse iterating to
// return the first overlap.
//
// FIXME: support extract(), handle tombstones of extracted lvrs.
typedef LiveIntervalUnion::SegmentIter SegmentIter;
SegmentIter upperBound(SegmentIter segBegin,
SegmentIter segEnd,
const LiveRange &lvrSeg) {
assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
// get the next LIU segment such that setg.start is not less than
// lvrSeg.start
SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
while (segI != segBegin) {
--segI;
if (lvrSeg.start >= segI->end)
return ++segI;
}
return segI;
}
} // end anonymous namespace
// Private interface accessed by Query.
//
// Find a pair of segments that intersect, one in the live virtual register
// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
// is responsible for advancing the LiveIntervalUnion segments to find a
// "notable" intersection, which requires query-specific logic.
//
// This design assumes only a fast mechanism for intersecting a single live
// virtual register segment with a set of LiveIntervalUnion segments. This may
// be ok since most LVRs have very few segments. If we had a data
// structure that optimizd MxN intersection of segments, then we would bypass
// the loop that advances within the LiveInterval.
//
// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
// segment whose start point is greater than LiveInterval's end point.
//
// Assumes that segments are sorted by start position in both
// LiveInterval and LiveSegments.
void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
LiveInterval::iterator lvrEnd = lvr_.end();
SegmentIter liuEnd = liu_.end();
while (ir.liuSegI_ != liuEnd) {
// Slowly advance the live virtual reg iterator until we surpass the next
// segment in this union. If this is ever used for coalescing of fixed
// registers and we have a LiveInterval with thousands of segments, then use
// upper bound instead.
while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
++ir.lvrSegI_;
if (ir.lvrSegI_ == lvrEnd)
break;
// lvrSegI_ may have advanced far beyond liuSegI_,
// do a fast intersection test to "catch up"
ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
// Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
if (ir.liuSegI_ == liuEnd)
break;
if (ir.liuSegI_->start < ir.lvrSegI_->end) {
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
break;
}
}
if (ir.liuSegI_ == liuEnd)
ir.lvrSegI_ = lvrEnd;
}
// Find the first intersection, and cache interference info
// (retain segment iterators into both lvr_ and liu_).
LiveIntervalUnion::InterferenceResult
LiveIntervalUnion::Query::firstInterference() {
if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
return firstInterference_;
}
firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
findIntersection(firstInterference_);
return firstInterference_;
}
// Treat the result as an iterator and advance to the next interfering pair
// of segments. This is a plain iterator with no filter.
bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
assert(isInterference(ir) && "iteration past end of interferences");
// Advance either the lvr or liu segment to ensure that we visit all unique
// overlapping pairs.
if (ir.lvrSegI_->end < ir.liuSegI_->end) {
if (++ir.lvrSegI_ == lvr_.end())
return false;
}
else {
if (++ir.liuSegI_ == liu_.end()) {
ir.lvrSegI_ = lvr_.end();
return false;
}
}
if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
return true;
// find the next intersection
findIntersection(ir);
return isInterference(ir);
}

View File

@ -0,0 +1,193 @@
//===-- LiveIntervalUnion.h - Live interval union data struct --*- C++ -*--===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// LiveIntervalUnion is a union of live segments across multiple live virtual
// registers. This may be used during coalescing to represent a congruence
// class, or during register allocation to model liveness of a physical
// register.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVALUNION
#define LLVM_CODEGEN_LIVEINTERVALUNION
#include "llvm/CodeGen/LiveInterval.h"
#include <vector>
#include <set>
namespace llvm {
// A LiveSegment is a copy of a LiveRange object used within
// LiveIntervalUnion. LiveSegment additionally contains a pointer to its
// original live virtual register (LiveInterval). This allows quick lookup of
// the live virtual register as we iterate over live segments in a union. Note
// that LiveRange is misnamed and actually represents only a single contiguous
// interval within a virtual register's liveness. To limit confusion, in this
// file we refer it as a live segment.
struct LiveSegment {
SlotIndex start;
SlotIndex end;
LiveInterval *liveVirtReg;
LiveSegment(SlotIndex s, SlotIndex e, LiveInterval &lvr)
: start(s), end(e), liveVirtReg(&lvr) {}
bool operator==(const LiveSegment &ls) const {
return start == ls.start && end == ls.end && liveVirtReg == ls.liveVirtReg;
}
bool operator!=(const LiveSegment &ls) const {
return !operator==(ls);
}
bool operator<(const LiveSegment &ls) const {
return start < ls.start || (start == ls.start && end < ls.end);
}
};
/// Compare a live virtual register segment to a LiveIntervalUnion segment.
inline bool overlap(const LiveRange &lvrSeg, const LiveSegment &liuSeg) {
return lvrSeg.start < liuSeg.end && liuSeg.start < lvrSeg.end;
}
inline bool operator<(SlotIndex V, const LiveSegment &ls) {
return V < ls.start;
}
inline bool operator<(const LiveSegment &ls, SlotIndex V) {
return ls.start < V;
}
/// Union of live intervals that are strong candidates for coalescing into a
/// single register (either physical or virtual depending on the context). We
/// expect the constituent live intervals to be disjoint, although we may
/// eventually make exceptions to handle value-based interference.
class LiveIntervalUnion {
// A set of live virtual register segments that supports fast insertion,
// intersection, and removal.
//
// FIXME: std::set is a placeholder until we decide how to
// efficiently represent it. Probably need to roll our own B-tree.
typedef std::set<LiveSegment> LiveSegments;
// A set of live virtual registers. Elements have type LiveInterval, where
// each element represents the liveness of a single live virtual register.
// This is traditionally known as a live range, but we refer is as a live
// virtual register to avoid confusing it with the misnamed LiveRange
// class.
typedef std::vector<LiveInterval*> LiveVirtRegs;
public:
// SegmentIter can advance to the next segment ordered by starting position
// which may belong to a different live virtual register. We also must be able
// to reach the current segment's containing virtual register.
typedef LiveSegments::iterator SegmentIter;
class InterferenceResult;
class Query;
private:
unsigned repReg_; // representative register number
LiveSegments segments_; // union of virtual reg segements
LiveVirtRegs lvrs_; // set of live virtual regs in the union
public:
// default ctor avoids placement new
LiveIntervalUnion() : repReg_(0) {}
void init(unsigned repReg) { repReg_ = repReg; }
SegmentIter begin() { return segments_.begin(); }
SegmentIter end() { return segments_.end(); }
/// FIXME: !!!!!!!!!!! Keeps a non-const ref
void unify(LiveInterval &lvr);
// FIXME: needed by RegAllocGreedy
//void extract(const LiveInterval &li);
/// Cache a single interference test result in the form of two intersecting
/// segments. This allows efficiently iterating over the interferences. The
/// iteration logic is handled by LiveIntervalUnion::Query which may
/// filter interferences depending on the type of query.
class InterferenceResult {
friend class Query;
LiveInterval::iterator lvrSegI_; // current position in _lvr
SegmentIter liuSegI_; // current position in _liu
// Internal ctor.
InterferenceResult(LiveInterval::iterator lvrSegI, SegmentIter liuSegI)
: lvrSegI_(lvrSegI), liuSegI_(liuSegI) {}
public:
// Public default ctor.
InterferenceResult(): lvrSegI_(), liuSegI_() {}
// Note: this interface provides raw access to the iterators because the
// result has no way to tell if it's valid to dereference them.
// Access the lvr segment.
const LiveInterval::iterator &lvrSegPos() const { return lvrSegI_; }
// Access the liu segment.
const SegmentIter &liuSeg() const { return liuSegI_; }
bool operator==(const InterferenceResult &ir) const {
return lvrSegI_ == ir.lvrSegI_ && liuSegI_ == ir.liuSegI_;
}
bool operator!=(const InterferenceResult &ir) const {
return !operator==(ir);
}
};
/// Query interferences between a single live virtual register and a live
/// interval union.
class Query {
LiveIntervalUnion &liu_;
LiveInterval &lvr_;
InterferenceResult firstInterference_;
// TBD: interfering vregs
public:
Query(LiveInterval &lvr, LiveIntervalUnion &liu): liu_(liu), lvr_(lvr) {}
LiveInterval &lvr() const { return lvr_; }
bool isInterference(const InterferenceResult &ir) const {
if (ir.lvrSegI_ != lvr_.end()) {
assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) &&
"invalid segment iterators");
return true;
}
return false;
}
// Does this live virtual register interfere with the union.
bool checkInterference() { return isInterference(firstInterference()); }
// First pair of interfering segments, or a noninterfering result.
InterferenceResult firstInterference();
// Treat the result as an iterator and advance to the next interfering pair
// of segments. Visiting each unique interfering pairs means that the same
// lvr or liu segment may be visited multiple times.
bool nextInterference(InterferenceResult &ir) const;
// TBD: bool collectInterferingVirtRegs(unsigned maxInterference)
private:
// Private interface for queries
void findIntersection(InterferenceResult &ir) const;
};
};
} // end namespace llvm
#endif // !defined(LLVM_CODEGEN_LIVEINTERVALUNION)

View File

@ -0,0 +1,179 @@
//===-- RegAllocBase.h - basic regalloc interface and driver --*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RegAllocBase class, which is the skeleton of a basic
// register allocation algorithm and interface for extending it. It provides the
// building blocks on which to construct other experimental allocators and test
// the validity of two principles:
//
// - If virtual and physical register liveness is modeled using intervals, then
// on-the-fly interference checking is cheap. Furthermore, interferences can be
// lazily cached and reused.
//
// - Register allocation complexity, and generated code performance is
// determined by the effectiveness of live range splitting rather than optimal
// coloring.
//
// Following the first principle, interfering checking revolves around the
// LiveIntervalUnion data structure.
//
// To fulfill the second principle, the basic allocator provides a driver for
// incremental splitting. It essentially punts on the problem of register
// coloring, instead driving the assignment of virtual to physical registers by
// the cost of splitting. The basic allocator allows for heuristic reassignment
// of registers, if a more sophisticated allocator chooses to do that.
//
// This framework provides a way to engineer the compile time vs. code
// quality trade-off without relying a particular theoretical solver.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_REGALLOCBASE
#define LLVM_CODEGEN_REGALLOCBASE
#include "LiveIntervalUnion.h"
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/ADT/OwningPtr.h"
#include <vector>
#include <queue>
namespace llvm {
class VirtRegMap;
/// RegAllocBase provides the register allocation driver and interface that can
/// be extended to add interesting heuristics.
///
/// More sophisticated allocators must override the selectOrSplit() method to
/// implement live range splitting and must specify a comparator to determine
/// register assignment priority. LessSpillWeightPriority is provided as a
/// standard comparator.
class RegAllocBase {
protected:
typedef SmallVector<LiveInterval*, 4> LiveVirtRegs;
typedef LiveVirtRegs::iterator LVRIter;
// Array of LiveIntervalUnions indexed by physical register.
class LIUArray {
unsigned nRegs_;
OwningArrayPtr<LiveIntervalUnion> array_;
public:
LIUArray(): nRegs_(0) {}
unsigned numRegs() const { return nRegs_; }
void init(unsigned nRegs);
void clear();
LiveIntervalUnion& operator[](unsigned physReg) {
assert(physReg < nRegs_ && "physReg out of bounds");
return array_[physReg];
}
};
const TargetRegisterInfo *tri_;
VirtRegMap *vrm_;
LiveIntervals *lis_;
LIUArray physReg2liu_;
RegAllocBase(): tri_(0), vrm_(0), lis_(0) {}
// A RegAlloc pass should call this before allocatePhysRegs.
void init(const TargetRegisterInfo &tri, VirtRegMap &vrm, LiveIntervals &lis);
// The top-level driver. Specialize with the comparator that determines the
// priority of assigning live virtual registers. The output is a VirtRegMap
// that us updated with physical register assignments.
template<typename LICompare>
void allocatePhysRegs(LICompare liCompare);
// A RegAlloc pass should override this to provide the allocation heuristics.
// Each call must guarantee forward progess by returning an available
// PhysReg or new set of split LiveVirtRegs. It is up to the splitter to
// converge quickly toward fully spilled live ranges.
virtual unsigned selectOrSplit(LiveInterval &lvr,
LiveVirtRegs &splitLVRs) = 0;
// A RegAlloc pass should call this when PassManager releases its memory.
virtual void releaseMemory();
// Helper for checking interference between a live virtual register and a
// physical register, including all its register aliases.
bool checkPhysRegInterference(LiveIntervalUnion::Query &query, unsigned preg);
private:
template<typename PQ>
void seedLiveVirtRegs(PQ &lvrQ);
};
// Heuristic that determines the priority of assigning virtual to physical
// registers. The main impact of the heuristic is expected to be compile time.
// The default is to simply compare spill weights.
struct LessSpillWeightPriority
: public std::binary_function<LiveInterval,LiveInterval, bool> {
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
return left->weight < right->weight;
}
};
// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
template<typename PQ>
void RegAllocBase::seedLiveVirtRegs(PQ &lvrQ) {
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
physReg2liu_[reg].unify(li);
}
else {
lvrQ.push(&li);
}
}
}
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
// selectOrSplit implementation.
template<typename LICompare>
void RegAllocBase::allocatePhysRegs(LICompare liCompare) {
typedef std::priority_queue
<LiveInterval*, std::vector<LiveInterval*>, LICompare> LiveVirtRegQueue;
LiveVirtRegQueue lvrQ(liCompare);
seedLiveVirtRegs(lvrQ);
while (!lvrQ.empty()) {
LiveInterval *lvr = lvrQ.top();
lvrQ.pop();
LiveVirtRegs splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
assert(splitLVRs.empty() && "inconsistent splitting");
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
else {
for (LVRIter lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI ) {
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
}
}
}
} // end namespace llvm
#endif // !defined(LLVM_CODEGEN_REGALLOCBASE)

View File

@ -0,0 +1,259 @@
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
// context
MachineFunction *mf_;
const TargetMachine *tm_;
MachineRegisterInfo *mri_;
// analyses
LiveStacks *ls_;
RenderMachineFunction *rmf_;
// state
std::auto_ptr<Spiller> spiller_;
public:
RABasic();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RABasic analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
virtual void releaseMemory();
virtual unsigned selectOrSplit(LiveInterval &lvr, LiveVirtRegs &splitLVRs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
// We should not need to publish the initializer as long as no other passes
// require RABasic.
#if 0 // disable INITIALIZE_PASS
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
#ifndef NDEBUG
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
#endif
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
#endif // INITIALIZE_PASS
RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
au.addRequired<LiveIntervals>();
au.addPreserved<SlotIndexes>();
if (StrongPHIElim)
au.addRequiredID(StrongPHIEliminationID);
au.addRequiredTransitive<RegisterCoalescer>();
au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
au.addRequired<VirtRegMap>();
au.addPreserved<VirtRegMap>();
DEBUG(au.addRequired<RenderMachineFunction>());
MachineFunctionPass::getAnalysisUsage(au);
}
void RABasic::releaseMemory() {
spiller_.reset(0);
RegAllocBase::releaseMemory();
}
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LIUArray::init(unsigned nRegs) {
array_.reset(new LiveIntervalUnion[nRegs]);
nRegs_ = nRegs;
for (unsigned pr = 0; pr < nRegs; ++pr) {
array_[pr].init(pr);
}
}
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
LiveIntervals &lis) {
tri_ = &tri;
vrm_ = &vrm;
lis_ = &lis;
physReg2liu_.init(tri_->getNumRegs());
}
void RegAllocBase::LIUArray::clear() {
nRegs_ = 0;
array_.reset(0);
}
void RegAllocBase::releaseMemory() {
physReg2liu_.clear();
}
// Check if this live virtual reg interferes with a physical register. If not,
// then check for interference on each register that aliases with the physical
// register.
bool RegAllocBase::checkPhysRegInterference(LiveIntervalUnion::Query &query,
unsigned preg) {
if (query.checkInterference())
return true;
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
// We assume it's very unlikely for a register in the alias set to also be
// in the original register class. So we don't bother caching the
// interference.
LiveIntervalUnion::Query subQuery(query.lvr(), physReg2liu_[*asI] );
if (subQuery.checkInterference())
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// RABasic Implementation
//===----------------------------------------------------------------------===//
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// Minimal implementation of register assignment and splitting--spills whenever
// we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them.
unsigned RABasic::selectOrSplit(LiveInterval &lvr, LiveVirtRegs &splitLVRs) {
// Check for an available reg in this class.
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
trcEnd = trc->allocation_order_end(*mf_);
trcI != trcEnd; ++trcI) {
unsigned preg = *trcI;
LiveIntervalUnion::Query query(lvr, physReg2liu_[preg]);
if (!checkPhysRegInterference(query, preg)) {
DEBUG(dbgs() << "\tallocating: " << tri_->getName(preg) << lvr << '\n');
return preg;
}
}
DEBUG(dbgs() << "\tspilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(&lvr, splitLVRs, spillIs);
// FIXME: update LiveStacks
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
mf_ = &mf;
tm_ = &mf.getTarget();
mri_ = &mf.getRegInfo();
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
allocatePhysRegs(LessSpillWeightPriority());
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
// optional HTML output
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}

View File

@ -1,4 +1,4 @@
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// //===-------- SplitKit.cpp - Toolkit for splitting live ranges --*- C++ -*-===//
// //
// The LLVM Compiler Infrastructure // The LLVM Compiler Infrastructure
// //