[MLIR][LINALG] Add canonicalization pattern in `linalg.generic` op for static shape inference.

This commit adds canonicalization pattern in `linalg.generic` op
for static shape inference. If any of the inputs or outputs have
static shape or is casted from a tensor of static shape, then
shapes of all the inputs and outputs can be inferred by using the
affine map of the static shape input/output.

Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>

Reviewed By: mravishankar

Differential Revision: https://reviews.llvm.org/D118929
This commit is contained in:
Prateek Gupta 2022-02-03 15:55:30 +00:00
parent c1e4e01945
commit 1a2bb03eda
3 changed files with 299 additions and 10 deletions

View File

@ -841,11 +841,169 @@ struct EraseIdentityGenericOp : public OpRewritePattern<GenericOp> {
return success();
}
};
/// For each of the operand in `operands` this function maps the static sizes of
/// dimensions to their affine dim expressions.
static void populateMap(GenericOp genericOp, ArrayRef<OpOperand *> operands,
llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize) {
for (OpOperand *opOperand : operands) {
if (genericOp.isScalar(opOperand))
continue;
Value src = opOperand->get();
auto sourceType = src.getType().cast<RankedTensorType>();
auto sourceMap = genericOp.getTiedIndexingMap(opOperand);
// Get the `sourceShape` of the `sourceType`. If the operand is a result of
// `tensor.cast` operation and source of the cast operation has a static
// shape, then assign it to the `sourceShape`.
auto parentOp = src.getDefiningOp();
ArrayRef<int64_t> sourceShape = sourceType.getShape();
if (parentOp) {
if (auto castOp = dyn_cast<tensor::CastOp>(parentOp)) {
Value castSource = castOp.source();
auto castSourceType = castSource.getType().cast<RankedTensorType>();
if (castSourceType.hasStaticShape())
sourceShape = castSourceType.getShape();
}
}
// If the source shape's dimension has a static shape, map the affine dim
// expression to the known static size.
for (unsigned i = 0; i < sourceShape.size(); i++) {
if (sourceType.isDynamicDim(i))
continue;
if (auto affineDimExpr = sourceMap.getResult(i).dyn_cast<AffineDimExpr>())
affineExprToSize.try_emplace(affineDimExpr, sourceShape[i]);
}
}
}
/// Creates new operand w.r.t 'opOperand' of `genericOp` with static sizes
/// mapped in `affineExprToSize`. New operands are created in `newOperands` and
/// their result types is stored in `resultTypes`. If `opOperand` requires no
/// change then `changeNeeded` is false and same operand is added in the
/// `newOperands` list.
static void createNewOperandWithStaticSizes(
Location loc, PatternRewriter &rewriter, OpOperand *opOperand,
llvm::DenseMap<AffineExpr, int64_t> &affineExprToSize, GenericOp genericOp,
SmallVector<Value> &newOperands, SmallVector<Type> &resultTypes,
bool &changeNeeded) {
Value src = opOperand->get();
newOperands.push_back(src);
if (genericOp.isScalar(opOperand))
return;
auto sourceType = src.getType().cast<RankedTensorType>();
Type resultType = sourceType;
if (sourceType.hasStaticShape() && genericOp.isOutputTensor(opOperand)) {
resultTypes.push_back(resultType);
return;
}
ArrayRef<int64_t> sourceShape = sourceType.getShape();
AffineMap sourceMap = genericOp.getTiedIndexingMap(opOperand);
SmallVector<int64_t> newShape;
// If operand is updated with new shape, `newOperandNeeded` will be
// true.
bool newOperandNeeded = false;
for (unsigned i = 0; i < sourceShape.size(); i++) {
int64_t dimShape = sourceShape[i];
AffineExpr dimExpr = sourceMap.getResult(i);
if (affineExprToSize.find(dimExpr) == affineExprToSize.end() ||
!sourceType.isDynamicDim(i)) {
newShape.push_back(dimShape);
continue;
}
// Dimension has a dynamic shape and corresponding affine dim
// expression is present in the map. So assign the size for the
// given affine dim expression to the dimension.
newShape.push_back(affineExprToSize[dimExpr]);
newOperandNeeded = true;
}
resultType = RankedTensorType::get(newShape, sourceType.getElementType());
if (newOperandNeeded) {
changeNeeded = true;
// Get the new operand value given its size and element type by
// casting it.
Value newOperand = rewriter.create<tensor::CastOp>(loc, resultType, src);
unsigned index = opOperand->getOperandNumber();
newOperands[index] = newOperand;
}
if (genericOp.isOutputTensor(opOperand))
resultTypes.push_back(resultType);
}
/// Static shapes for the operands can be inferred if any one of the operands
/// have a static shape. This can be done by referring to the affine dim
/// expressions for the operand.
struct InferStaticShapeOfOperands : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
if (!genericOp.hasTensorSemantics())
return failure();
// Maps must be projected permutations.
if (llvm::any_of(genericOp.getIndexingMaps(), [](AffineMap map) {
return !map.isProjectedPermutation();
}))
return failure();
// Maps affine dim expressions to the static size of that dimension.
llvm::DenseMap<AffineExpr, int64_t> affineExprToSize;
Location loc = genericOp.getLoc();
// For each of the affine dim expression, check if the size is known. If
// known add that in the map.
populateMap(genericOp, genericOp.getInputAndOutputOperands(),
affineExprToSize);
SmallVector<Value> newOperands;
SmallVector<Type> resultTypes;
// `changeNeeded` is `false` if the operands of `genericOp` require no
// change in their types.
bool changeNeeded = false;
newOperands.reserve(genericOp.getNumInputsAndOutputs());
resultTypes.reserve(genericOp.getNumOutputs());
// Iterate over all the operands and update the static sizes.
for (OpOperand *opOperand : genericOp.getInputAndOutputOperands()) {
createNewOperandWithStaticSizes(loc, rewriter, opOperand,
affineExprToSize, genericOp, newOperands,
resultTypes, changeNeeded);
}
// If the generic op has all the required static information, no
// canonicalization needed.
if (!changeNeeded)
return failure();
// Clone op.
Operation *newOp =
cast<linalg::LinalgOp>(genericOp.getOperation())
.clone(rewriter, genericOp->getLoc(), resultTypes, newOperands);
SmallVector<Value> replacements;
replacements.reserve(newOp->getNumResults());
for (auto it : llvm::zip(genericOp->getResults(), newOp->getResults())) {
Value newResult = std::get<1>(it);
Value oldResult = std::get<0>(it);
Type newType = newResult.getType();
Type oldType = oldResult.getType();
replacements.push_back(
(newType != oldType)
? rewriter.create<tensor::CastOp>(loc, newType, newResult)
: newResult);
}
rewriter.replaceOp(genericOp, replacements);
return success();
}
};
} // namespace
void GenericOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DeduplicateGenericOpInputs, EraseIdentityGenericOp>(context);
results.add<DeduplicateGenericOpInputs, EraseIdentityGenericOp,
InferStaticShapeOfOperands>(context);
}
//===----------------------------------------------------------------------===//

View File

@ -650,3 +650,133 @@ func @no_fold_pad_fill_value_mismatch() -> tensor<412x276xf32> {
} : tensor<400x273xf32> to tensor<412x276xf32>
return %pad : tensor<412x276xf32>
}
// -----
// Tests below verify whether static information is propagated through all the operands of generic op.
// 1. If one of the inputs of generic op has static info and it has no cast source.
// 2. If one of the inputs of generic op has static info and it is coming from tensr.cast operation.
// 3. If one of the outputs of generic op has static info and it is coming from tenso.cast operation.
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @static_input_without_cast
// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x3x4xf32>, %[[ARG1:.*]]: tensor<?x?x?xf32>) -> tensor<2x3x4xf32> {
func @static_input_without_cast(%arg0 : tensor<2x3x4xf32>, %arg1: tensor<?x?x?xf32>) -> tensor<2x3x4xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg0, %c0 : tensor<2x3x4xf32>
%1 = tensor.dim %arg0, %c1 : tensor<2x3x4xf32>
%2 = tensor.dim %arg0, %c2 : tensor<2x3x4xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = linalg.generic {
indexing_maps = [#map, #map, #map],
iterator_types = ["parallel", "parallel", "parallel"]
} ins(%arg0, %arg1 : tensor<2x3x4xf32>, tensor<?x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : f32, %arg3 : f32, %arg4 : f32):
%9 = arith.addf %arg2, %arg3 : f32
linalg.yield %9 : f32
} -> (tensor<?x?x?xf32>)
%5 = tensor.cast %4 : tensor<?x?x?xf32> to tensor<2x3x4xf32>
return %5 : tensor<2x3x4xf32>
// CHECK: %[[CAST_ARG1:.*]] = tensor.cast %[[ARG1]] : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK-NEXT: %[[GENERIC_OP:.*]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0]], %[[CAST_ARG1]] : tensor<2x3x4xf32>, tensor<2x3x4xf32>)
// CHECK-SAME: outs({{.*}} : tensor<2x3x4xf32>)
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @static_input_with_cast
// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x3x4xf32>, %[[ARG1:.*]]: tensor<?x?x?xf32>) -> tensor<2x3x4xf32> {
func @static_input_with_cast(%arg0 : tensor<2x3x4xf32>, %arg1: tensor<?x?x?xf32>) -> tensor<2x3x4xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg0, %c0 : tensor<2x3x4xf32>
%1 = tensor.dim %arg0, %c1 : tensor<2x3x4xf32>
%2 = tensor.dim %arg0, %c2 : tensor<2x3x4xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = tensor.cast %arg1 : tensor<?x?x?xf32> to tensor<2x?x?xf32>
%5 = linalg.generic {
indexing_maps = [#map, #map, #map],
iterator_types = ["parallel", "parallel", "parallel"]
} ins(%arg0, %4 : tensor<2x3x4xf32>, tensor<2x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : f32, %arg3 : f32, %arg4 : f32):
%9 = arith.addf %arg2, %arg3 : f32
linalg.yield %9 : f32
} -> (tensor<?x?x?xf32>)
%6 = tensor.cast %5 : tensor<?x?x?xf32> to tensor<2x3x4xf32>
return %6: tensor<2x3x4xf32>
// CHECK: %[[CAST_ARG1:.*]] = tensor.cast %[[ARG1]] : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK-NEXT: %[[GENERIC_OP:.*]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0]], %[[CAST_ARG1]] : tensor<2x3x4xf32>, tensor<2x3x4xf32>)
// CHECK-SAME: outs({{.*}} : tensor<2x3x4xf32>)
}
// -----
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @static_output_with_cast
// CHECK-SAME: (%[[ARG0:.*]]: tensor<?x?x?xf32>, %[[ARG1:.*]]: tensor<?x?x?xf32>, %[[ARG2:.*]]: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
func @static_output_with_cast(%arg0 : tensor<?x?x?xf32>, %arg1: tensor<?x?x?xf32>, %arg2: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg2, %c0 : tensor<2x3x4xf32>
%1 = tensor.dim %arg2, %c1 : tensor<2x3x4xf32>
%2 = tensor.dim %arg2, %c2 : tensor<2x3x4xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = tensor.cast %3 : tensor<?x?x?xf32> to tensor<2x3x4xf32>
%5 = tensor.cast %arg1 : tensor<?x?x?xf32> to tensor<2x?x?xf32>
%6 = linalg.generic {
indexing_maps = [#map, #map, #map],
iterator_types = ["parallel", "parallel", "parallel"]
} ins(%arg0, %5 : tensor<?x?x?xf32>, tensor<2x?x?xf32>)
outs(%4 : tensor<2x3x4xf32>) {
^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
%9 = arith.addf %arg3, %arg4 : f32
linalg.yield %9 : f32
} -> (tensor<2x3x4xf32>)
return %6: tensor<2x3x4xf32>
// CHECK: %[[CAST_ARG0:.*]] = tensor.cast %[[ARG0]] : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK-NEXT: %[[CAST_ARG1:.*]] = tensor.cast %[[ARG1]] : tensor<?x?x?xf32> to tensor<2x3x4xf32>
// CHECK-NEXT: %[[GENERIC_OP:.*]] = linalg.generic
// CHECK-SAME: ins(%[[CAST_ARG0]], %[[CAST_ARG1]] : tensor<2x3x4xf32>, tensor<2x3x4xf32>)
// CHECK-SAME: outs({{.*}} : tensor<2x3x4xf32>)
}
// -----
// This test checks the folding of tensor.cast operation when the source value of cast
// has more static information than the destination value.
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @cast_source
// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x3x4xf32>, %[[ARG1:.*]]: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
func @cast_source(%arg0 : tensor<2x3x4xf32>, %arg1: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%0 = tensor.dim %arg0, %c0 : tensor<2x3x4xf32>
%1 = tensor.dim %arg0, %c1 : tensor<2x3x4xf32>
%2 = tensor.dim %arg0, %c2 : tensor<2x3x4xf32>
%3 = linalg.init_tensor [%0, %1, %2] : tensor<?x?x?xf32>
%4 = tensor.cast %arg0 : tensor<2x3x4xf32> to tensor<2x?x?xf32>
%5 = tensor.cast %arg1 : tensor<2x3x4xf32> to tensor<2x?x?xf32>
%6 = linalg.generic {
indexing_maps = [#map, #map, #map],
iterator_types = ["parallel", "parallel", "parallel"]
} ins(%4, %5 : tensor<2x?x?xf32>, tensor<2x?x?xf32>)
outs(%3 : tensor<?x?x?xf32>) {
^bb0(%arg2 : f32, %arg3 : f32, %arg4 : f32):
%9 = arith.addf %arg2, %arg3 : f32
linalg.yield %9 : f32
} -> (tensor<?x?x?xf32>)
%7 = tensor.cast %6 : tensor<?x?x?xf32> to tensor<2x3x4xf32>
return %7: tensor<2x3x4xf32>
// CHECK: %[[GENERIC_OP:.*]] = linalg.generic
// CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3x4xf32>, tensor<2x3x4xf32>)
// CHECK-SAME: outs({{.*}} : tensor<2x3x4xf32>)
}

View File

@ -533,27 +533,28 @@ func @no_fuse_dynamic_dims(%arg0: tensor<?x?xf32>) -> tensor<?xf32> {
// -----
func @no_fuse_mismatched_dynamism(%arg0: tensor<1x1xi64>, %arg1: tensor<?xi64>) -> tensor<1xi64> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<1x1xi64> into tensor<1xi64>
%1 = linalg.init_tensor [1] : tensor<1xi64>
func @no_fuse_mismatched_dynamism(%arg0: tensor<2x1xi64>, %arg1: tensor<?xi64>) -> tensor<2xi64> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<2x1xi64> into tensor<2xi64>
%1 = linalg.init_tensor [2] : tensor<2xi64>
%2 = linalg.generic
{indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%0, %arg1 : tensor<1xi64>, tensor<?xi64>)
outs(%1 : tensor<1xi64>) {
ins(%0, %arg1 : tensor<2xi64>, tensor<?xi64>)
outs(%1 : tensor<2xi64>) {
^bb0(%arg4: i64, %arg5: i64, %arg6: i64):
%3 = arith.addi %arg4, %arg5 : i64
linalg.yield %3 : i64
} -> tensor<1xi64>
return %2 : tensor<1xi64>
} -> tensor<2xi64>
return %2 : tensor<2xi64>
}
// CHECK: func @no_fuse_mismatched_dynamism
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x1xi64>
// CHECK-SAME: %[[ARG0:.+]]: tensor<2x1xi64>
// CHECK-SAME: %[[ARG1:.+]]: tensor<?xi64>
// CHECK: %[[RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]]
// CHECK: %[[CAST:.+]] = tensor.cast %[[ARG1]] : tensor<?xi64> to tensor<2xi64>
// CHECK: %[[GENERIC:.+]] = linalg.generic
// CHECK-SAME: ins(%[[RESHAPE]], %[[ARG1]] : tensor<1xi64>, tensor<?xi64>)
// CHECK-SAME: ins(%[[RESHAPE]], %[[CAST]] : tensor<2xi64>, tensor<2xi64>)
// CHECK: return %[[GENERIC]]