[x86] change names of vector splitting helper functions; NFC

As the code comments suggest, these are about splitting, and they
are not necessarily limited to lowering, so that misled me.

There's nothing that's actually x86-specific in these either, so 
they might be better placed in a common header so any target can 
use them.

llvm-svn: 342575
This commit is contained in:
Sanjay Patel 2018-09-19 18:52:00 +00:00
parent 84d912b7d2
commit 1a1c0ee599
1 changed files with 15 additions and 16 deletions

View File

@ -22832,7 +22832,7 @@ static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
/// Break a 256-bit integer operation into two new 128-bit ones and then
/// concatenate the result back.
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
static SDValue split256IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && VT.isInteger() &&
@ -22861,7 +22861,7 @@ static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
/// Break a 512-bit integer operation into two new 256-bit ones and then
/// concatenate the result back.
static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) {
static SDValue split512IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is512BitVector() && VT.isInteger() &&
@ -22896,7 +22896,7 @@ static SDValue LowerADD_SUB(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
}
static SDValue LowerABS(SDValue Op, SelectionDAG &DAG) {
@ -22924,7 +22924,7 @@ static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
// For AVX1 cases, split to use legal ops (everything but v4i64).
if (VT.getScalarType() != MVT::i64 && VT.is256BitVector())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
SDLoc DL(Op);
unsigned Opcode = Op.getOpcode();
@ -22966,9 +22966,9 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
if (VT.getScalarType() == MVT::i1)
return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
// Decompose 256-bit ops into smaller 128-bit ops.
// Decompose 256-bit ops into 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
@ -22980,13 +22980,13 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
// For 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8)
return Lower512IntArith(Op, DAG);
return split512IntArith(Op, DAG);
// For 256-bit vectors, split into 128-bit vectors to allow the
// sign-extension to occur. We don't need this on AVX512BW as we can
// safely sign-extend to v32i16.
if (VT == MVT::v32i8 && !Subtarget.hasBWI())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
return DAG.getNode(
@ -23117,9 +23117,9 @@ static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// Decompose 256-bit ops into smaller 128-bit ops.
// Decompose 256-bit ops into 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) {
assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
@ -23202,7 +23202,7 @@ static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
// For 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8)
return Lower512IntArith(Op, DAG);
return split512IntArith(Op, DAG);
// AVX2 implementations - extend xmm subvectors to ymm.
if (Subtarget.hasInt256()) {
@ -24257,9 +24257,9 @@ static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
return R;
}
// Decompose 256-bit shifts into smaller 128-bit shifts.
// Decompose 256-bit shifts into 128-bit shifts.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
return SDValue();
}
@ -24299,9 +24299,8 @@ static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
// XOP has 128-bit vector variable + immediate rotates.
// +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL.
if (Subtarget.hasXOP()) {
// Split 256-bit integers.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
// Attempt to rotate by immediate.
@ -24320,7 +24319,7 @@ static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
// Split 256-bit integers on pre-AVX2 targets.
if (VT.is256BitVector() && !Subtarget.hasAVX2())
return Lower256IntArith(Op, DAG);
return split256IntArith(Op, DAG);
assert((VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8 ||
((VT == MVT::v8i32 || VT == MVT::v16i16 || VT == MVT::v32i8) &&