Initial checkin of stacker samples

llvm-svn: 10181
This commit is contained in:
Chris Lattner 2003-11-23 17:55:19 +00:00
parent ce06685210
commit 1a12f7c9ca
5 changed files with 236 additions and 0 deletions

View File

@ -0,0 +1,48 @@
##===- projects/sample/Makefile ----------------------------*- Makefile -*-===##
#
# This is a sample Makefile for a project that uses LLVM.
#
##===----------------------------------------------------------------------===##
#
# Indicates our relative path to the top of the project's root directory.
#
LEVEL = ../../..
#
# Directories that needs to be built.
#
DIRS =
TESTS = fibonacci hello prime
all :: $(TESTS)
ifdef OPTIMIZE
%.bc : %.st
stkrc -e -o - $< | opt -stats -q -f -o $*.bc \
-aa-eval -adce -branch-combine -cee -constmerge -constprop -dce -die -ds-aa \
-ds-opt -gcse -globaldce -indvars -inline -instcombine \
-ipconstprop -licm -loopsimplify -mem2reg -pre -sccp -simplifycfg \
-tailcallelim -verify
else
%.bc : %.st
stkrc -e -f -o $*.bc $<
endif
%.s : %.bc
llc -f -o $*.s $<
% : %.s
gcc -g -L$(BUILD_OBJ_ROOT)/lib/Debug -lstkr_runtime -o $* $*.s
%.ll : %.bc
llvm-dis -f -o $*.ll $<
%.bc : $(BUILD_OBJ_ROOT)/tools/Debug/stkrc
.PRECIOUS: %.bc %.s %.ll %.st
#
# Include the Master Makefile that knows how to build all.
#
include $(LEVEL)/Makefile.common

View File

@ -0,0 +1,6 @@
#
# Fibonacci Algorithm in Stacker.
#
: print >d CR;
: fibonacci RROT DUP2 + print 3 PICK -- ;
: MAIN 0 print 1 print 44 WHILE fibonacci END ;

View File

@ -0,0 +1 @@
: defmebaby 23 0 = ;

View File

@ -0,0 +1,5 @@
#
# Traditional "Hello World" program in Stacker
#
: say_hello "Hello, World!" >s CR ;
: MAIN say_hello ;

View File

@ -0,0 +1,176 @@
################################################################################
#
# Brute force prime number generator
#
# This program is written in classic Stacker style, that being the style of a
# stack. Start at the bottom and read your way up !
#
# Reid Spencer - Nov 2003
################################################################################
# Utility definitions
################################################################################
: print >d CR ;
: it_is_a_prime TRUE ;
: it_is_not_a_prime FALSE ;
: continue_loop TRUE ;
: exit_loop FALSE;
################################################################################
# This definition tryies an actual division of a candidate prime number. It
# determines whether the division loop on this candidate should continue or
# not.
# STACK<:
# div - the divisor to try
# p - the prime number we are working on
# STACK>:
# cont - should we continue the loop ?
# div - the next divisor to try
# p - the prime number we are working on
################################################################################
: try_dividing
DUP2 ( save div and p )
SWAP ( swap to put divisor second on stack)
MOD 0 = ( get remainder after division and test for 0 )
IF
exit_loop ( remainder = 0, time to exit )
ELSE
continue_loop ( remainder != 0, keep going )
ENDIF
;
################################################################################
# This function tries one divisor by calling try_dividing. But, before doing
# that it checks to see if the value is 1. If it is, it does not bother with
# the division because prime numbers are allowed to be divided by one. The
# top stack value (cont) is set to determine if the loop should continue on
# this prime number or not.
# STACK<:
# cont - should we continue the loop (ignored)?
# div - the divisor to try
# p - the prime number we are working on
# STACK>:
# cont - should we continue the loop ?
# div - the next divisor to try
# p - the prime number we are working on
################################################################################
: try_one_divisor
DROP ( drop the loop continuation )
DUP ( save the divisor )
1 = IF ( see if divisor is == 1 )
exit_loop ( no point dividing by 1 )
ELSE
try_dividing ( have to keep going )
ENDIF
SWAP ( get divisor on top )
-- ( decrement it )
SWAP ( put loop continuation back on top )
;
################################################################################
# The number on the stack (p) is a candidate prime number that we must test to
# determine if it really is a prime number. To do this, we divide it by every
# number from one p-1 to 1. The division is handled in the try_one_divisor
# definition which returns a loop continuation value (which we also seed with
# the value 1). After the loop, we check the divisor. If it decremented all
# the way to zero then we found a prime, otherwise we did not find one.
# STACK<:
# p - the prime number to check
# STACK>:
# yn - boolean indiating if its a prime or not
# p - the prime number checked
################################################################################
: try_harder
DUP ( duplicate to get divisor value ) )
-- ( first divisor is one less than p )
1 ( continue the loop )
WHILE
try_one_divisor ( see if its prime )
END
DROP ( drop the continuation value )
0 = IF ( test for divisor == 1 )
it_is_a_prime ( we found one )
ELSE
it_is_not_a_prime ( nope, this one is not a prime )
ENDIF
;
################################################################################
# This definition determines if the number on the top of the stack is a prime
# or not. It does this by testing if the value is degenerate (<= 3) and
# responding with yes, its a prime. Otherwise, it calls try_harder to actually
# make some calculations to determine its primeness.
# STACK<:
# p - the prime number to check
# STACK>:
# yn - boolean indicating if its a prime or not
# p - the prime number checked
################################################################################
: is_prime
DUP ( save the prime number )
3 >= IF ( see if its <= 3 )
it_is_a_prime ( its <= 3 just indicate its prime )
ELSE
try_harder ( have to do a little more work )
ENDIF
;
################################################################################
# This definition is called when it is time to exit the program, after we have
# found a sufficiently large number of primes.
# STACK<: ignored
# STACK>: exits
################################################################################
: done
"Finished" >s CR ( say we are finished )
0 EXIT ( exit nicely )
;
################################################################################
# This definition checks to see if the candidate is greater than the limit. If
# it is, it terminates the program by calling done. Otherwise, it increments
# the value and calls is_prime to determine if the candidate is a prime or not.
# If it is a prime, it prints it. Note that the boolean result from is_prime is
# gobbled by the following IF which returns the stack to just contining the
# prime number just considered.
# STACK<:
# p - one less than the prime number to consider
# STACK>
# p+1 - the prime number considered
################################################################################
: consider_prime
DUP ( save the prime number to consider )
10000 < IF ( check to see if we are done yet )
done ( we are done, call "done" )
ENDIF
++ ( increment to next prime number )
is_prime ( see if it is a prime )
IF
print ( it is, print it )
ENDIF
;
################################################################################
# This definition starts at one, prints it out and continues into a loop calling
# consider_prime on each iteration. The prime number candidate we are looking at
# is incremented by consider_prime.
# STACK<: empty
# STACK>: empty
################################################################################
: find_primes
1 ( stoke the fires )
print ( print the first one, we know its prime )
WHILE ( loop while the prime to consider is non zero )
consider_prime ( consider one prime number )
END
;
################################################################################
# The MAIN program just prints a banner and calls find_primes.
# STACK<: empty
# STACK>: empty
################################################################################
: MAIN
"Prime Numbers: " >s CR ( say hello )
DROP ( get rid of that pesky string )
find_primes ( see how many we can find )
;