[InstCombine] Fold overflow bit of [u|s]mul.with.overflow in a poison-safe way

As discussed in D101191, this patch adds a poison-safe folding of overflow bit check:
```
  %Op0 = icmp ne i4 %X, 0
  %Agg = call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %Y)
  %Op1 = extractvalue { i4, i1 } %Agg, 1
  %ret = select i1 %Op0, i1 %Op1, i1 false
=>
  %Y.fr = freeze %Y
  %Agg = call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %Y.fr)
  %Op1 = extractvalue { i4, i1 } %Agg, 1
  %ret = %Op1
```

https://alive2.llvm.org/ce/z/zgPUGT
https://alive2.llvm.org/ce/z/h2gZ_6

Note that there are cases where inserting freeze is not necessary: e.g. %Y is `noundef`.
In this case, LLVM is already good because `%ret` is already successfully folded into `and`,
triggering the pre-existing optimization in InstSimplify: https://godbolt.org/z/v6qena15K

Differential Revision: https://reviews.llvm.org/D101423
This commit is contained in:
Juneyoung Lee 2021-04-28 11:34:45 +09:00
parent 603ae6082b
commit 1977c53b2a
9 changed files with 151 additions and 95 deletions

View File

@ -0,0 +1,45 @@
//===-- OverflowInstAnalysis.h - Utils to fold overflow insts ----*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file holds routines to help analyse overflow instructions
// and fold them into constants or other overflow instructions
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_OVERFLOWINSTANALYSIS_H
#define LLVM_ANALYSIS_OVERFLOWINSTANALYSIS_H
#include "llvm/IR/InstrTypes.h"
namespace llvm {
class Value;
class Use;
/// Match one of the patterns up to the select/logic op:
/// %Op0 = icmp ne i4 %X, 0
/// %Agg = call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %Y)
/// %Op1 = extractvalue { i4, i1 } %Agg, 1
/// %ret = select i1 %Op0, i1 %Op1, i1 false / %ret = and i1 %Op0, %Op1
///
/// %Op0 = icmp eq i4 %X, 0
/// %Agg = call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %Y)
/// %NotOp1 = extractvalue { i4, i1 } %Agg, 1
/// %Op1 = xor i1 %NotOp1, true
/// %ret = select i1 %Op0, i1 true, i1 %Op1 / %ret = or i1 %Op0, %Op1
///
/// Callers are expected to align that with the operands of the select/logic.
/// IsAnd is set to true if the Op0 and Op1 are used as the first pattern.
/// If Op0 and Op1 match one of the patterns above, return true and fill Y's
/// use.
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd,
Use *&Y);
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd);
} // end namespace llvm
#endif

View File

@ -101,6 +101,7 @@ add_llvm_component_library(LLVMAnalysis
ObjCARCAnalysisUtils.cpp ObjCARCAnalysisUtils.cpp
ObjCARCInstKind.cpp ObjCARCInstKind.cpp
OptimizationRemarkEmitter.cpp OptimizationRemarkEmitter.cpp
OverflowInstAnalysis.cpp
PHITransAddr.cpp PHITransAddr.cpp
PhiValues.cpp PhiValues.cpp
PostDominators.cpp PostDominators.cpp

View File

@ -26,6 +26,7 @@
#include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LoopAnalysisManager.h" #include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OverflowInstAnalysis.h"
#include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h" #include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/ConstantRange.h" #include "llvm/IR/ConstantRange.h"
@ -1947,77 +1948,6 @@ static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
return nullptr; return nullptr;
} }
/// Check that the Op1 is in expected form, i.e.:
/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
/// %Op1 = extractvalue { i4, i1 } %Agg, 1
static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
Value *X) {
auto *Extract = dyn_cast<ExtractValueInst>(Op1);
// We should only be extracting the overflow bit.
if (!Extract || !Extract->getIndices().equals(1))
return false;
Value *Agg = Extract->getAggregateOperand();
// This should be a multiplication-with-overflow intrinsic.
if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
m_Intrinsic<Intrinsic::smul_with_overflow>())))
return false;
// One of its multipliers should be the value we checked for zero before.
if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
m_Argument<1>(m_Specific(X)))))
return false;
return true;
}
/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
/// other form of check, e.g. one that was using division; it may have been
/// guarded against division-by-zero. We can drop that check now.
/// Look for:
/// %Op0 = icmp ne i4 %X, 0
/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
/// %Op1 = extractvalue { i4, i1 } %Agg, 1
/// %??? = and i1 %Op0, %Op1
/// We can just return %Op1
static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
ICmpInst::Predicate Pred;
Value *X;
if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
Pred != ICmpInst::Predicate::ICMP_NE)
return nullptr;
// Is Op1 in expected form?
if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
return nullptr;
// Can omit 'and', and just return the overflow bit.
return Op1;
}
/// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
/// other form of check, e.g. one that was using division; it may have been
/// guarded against division-by-zero. We can drop that check now.
/// Look for:
/// %Op0 = icmp eq i4 %X, 0
/// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
/// %Op1 = extractvalue { i4, i1 } %Agg, 1
/// %NotOp1 = xor i1 %Op1, true
/// %or = or i1 %Op0, %NotOp1
/// We can just return %NotOp1
static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
Value *NotOp1) {
ICmpInst::Predicate Pred;
Value *X;
if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
Pred != ICmpInst::Predicate::ICMP_EQ)
return nullptr;
// We expect the other hand of an 'or' to be a 'not'.
Value *Op1;
if (!match(NotOp1, m_Not(m_Value(Op1))))
return nullptr;
// Is Op1 in expected form?
if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
return nullptr;
// Can omit 'and', and just return the inverted overflow bit.
return NotOp1;
}
/// Given a bitwise logic op, check if the operands are add/sub with a common /// Given a bitwise logic op, check if the operands are add/sub with a common
/// source value and inverted constant (identity: C - X -> ~(X + ~C)). /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
@ -2102,10 +2032,10 @@ static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
// If we have a multiplication overflow check that is being 'and'ed with a // If we have a multiplication overflow check that is being 'and'ed with a
// check that one of the multipliers is not zero, we can omit the 'and', and // check that one of the multipliers is not zero, we can omit the 'and', and
// only keep the overflow check. // only keep the overflow check.
if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
return V; return Op1;
if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) if (isCheckForZeroAndMulWithOverflow(Op1, Op0, true))
return V; return Op0;
// A & (-A) = A if A is a power of two or zero. // A & (-A) = A if A is a power of two or zero.
if (match(Op0, m_Neg(m_Specific(Op1))) || if (match(Op0, m_Neg(m_Specific(Op1))) ||
@ -2316,10 +2246,10 @@ static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
// If we have a multiplication overflow check that is being 'and'ed with a // If we have a multiplication overflow check that is being 'and'ed with a
// check that one of the multipliers is not zero, we can omit the 'and', and // check that one of the multipliers is not zero, we can omit the 'and', and
// only keep the overflow check. // only keep the overflow check.
if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
return V; return Op1;
if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
return V; return Op0;
// Try some generic simplifications for associative operations. // Try some generic simplifications for associative operations.
if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,

View File

@ -0,0 +1,71 @@
//==-- OverflowInstAnalysis.cpp - Utils to fold overflow insts ----*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file holds routines to help analyse overflow instructions
// and fold them into constants or other overflow instructions
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/OverflowInstAnalysis.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace llvm::PatternMatch;
bool llvm::isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd,
Use *&Y) {
ICmpInst::Predicate Pred;
Value *X, *NotOp1;
int XIdx;
IntrinsicInst *II;
if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())))
return false;
/// %Agg = call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
/// %V = extractvalue { i4, i1 } %Agg, 1
auto matchMulOverflowCheck = [X, &II, &XIdx](Value *V) {
auto *Extract = dyn_cast<ExtractValueInst>(V);
// We should only be extracting the overflow bit.
if (!Extract || !Extract->getIndices().equals(1))
return false;
II = dyn_cast<IntrinsicInst>(Extract->getAggregateOperand());
if (!match(II, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
m_Intrinsic<Intrinsic::smul_with_overflow>())))
return false;
if (II->getArgOperand(0) == X)
XIdx = 0;
else if (II->getArgOperand(1) == X)
XIdx = 1;
else
return false;
return true;
};
bool Matched =
(IsAnd && Pred == ICmpInst::Predicate::ICMP_NE &&
matchMulOverflowCheck(Op1)) ||
(!IsAnd && Pred == ICmpInst::Predicate::ICMP_EQ &&
match(Op1, m_Not(m_Value(NotOp1))) && matchMulOverflowCheck(NotOp1));
if (!Matched)
return false;
Y = &II->getArgOperandUse(!XIdx);
return true;
}
bool llvm::isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1,
bool IsAnd) {
Use *Y;
return isCheckForZeroAndMulWithOverflow(Op0, Op1, IsAnd, Y);
}

View File

@ -18,6 +18,7 @@
#include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CmpInstAnalysis.h" #include "llvm/Analysis/CmpInstAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/OverflowInstAnalysis.h"
#include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h" #include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h" #include "llvm/IR/Constant.h"
@ -2697,6 +2698,18 @@ Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
if (Value *S = SimplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, if (Value *S = SimplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
/* AllowRefinement */ true)) /* AllowRefinement */ true))
return replaceOperand(SI, 2, S); return replaceOperand(SI, 2, S);
if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
Use *Y = nullptr;
bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
Value *Op1 = IsAnd ? TrueVal : FalseVal;
if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
replaceUse(*Y, FI);
return replaceInstUsesWith(SI, Op1);
}
}
} }
// Selecting between two integer or vector splat integer constants? // Selecting between two integer or vector splat integer constants?

View File

@ -5,12 +5,11 @@ declare { i4, i1 } @llvm.smul.with.overflow.i4(i4, i4) #1
define i1 @t0_umul(i4 %size, i4 %nmemb) { define i1 @t0_umul(i4 %size, i4 %nmemb) {
; CHECK-LABEL: @t0_umul( ; CHECK-LABEL: @t0_umul(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i4 [[SIZE:%.*]], 0 ; CHECK-NEXT: [[NMEMB_FR:%.*]] = freeze i4 [[NMEMB:%.*]]
; CHECK-NEXT: [[SMUL:%.*]] = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 [[SIZE]], i4 [[NMEMB:%.*]]) ; CHECK-NEXT: [[SMUL:%.*]] = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 [[SIZE:%.*]], i4 [[NMEMB_FR]])
; CHECK-NEXT: [[SMUL_OV:%.*]] = extractvalue { i4, i1 } [[SMUL]], 1 ; CHECK-NEXT: [[SMUL_OV:%.*]] = extractvalue { i4, i1 } [[SMUL]], 1
; CHECK-NEXT: [[PHITMP:%.*]] = xor i1 [[SMUL_OV]], true ; CHECK-NEXT: [[PHITMP:%.*]] = xor i1 [[SMUL_OV]], true
; CHECK-NEXT: [[OR:%.*]] = select i1 [[CMP]], i1 true, i1 [[PHITMP]] ; CHECK-NEXT: ret i1 [[PHITMP]]
; CHECK-NEXT: ret i1 [[OR]]
; ;
%cmp = icmp eq i4 %size, 0 %cmp = icmp eq i4 %size, 0
%smul = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 %size, i4 %nmemb) %smul = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 %size, i4 %nmemb)

View File

@ -20,11 +20,10 @@ define i1 @t0_smul(i4 %size, i4 %nmemb) {
define i1 @t1_commutative(i4 %size, i4 %nmemb) { define i1 @t1_commutative(i4 %size, i4 %nmemb) {
; CHECK-LABEL: @t1_commutative( ; CHECK-LABEL: @t1_commutative(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i4 [[SIZE:%.*]], 0 ; CHECK-NEXT: [[NMEMB_FR:%.*]] = freeze i4 [[NMEMB:%.*]]
; CHECK-NEXT: [[SMUL:%.*]] = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 [[SIZE]], i4 [[NMEMB:%.*]]) ; CHECK-NEXT: [[SMUL:%.*]] = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 [[SIZE:%.*]], i4 [[NMEMB_FR]])
; CHECK-NEXT: [[SMUL_OV:%.*]] = extractvalue { i4, i1 } [[SMUL]], 1 ; CHECK-NEXT: [[SMUL_OV:%.*]] = extractvalue { i4, i1 } [[SMUL]], 1
; CHECK-NEXT: [[AND:%.*]] = select i1 [[CMP]], i1 [[SMUL_OV]], i1 false ; CHECK-NEXT: ret i1 [[SMUL_OV]]
; CHECK-NEXT: ret i1 [[AND]]
; ;
%cmp = icmp ne i4 %size, 0 %cmp = icmp ne i4 %size, 0
%smul = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 %size, i4 %nmemb) %smul = tail call { i4, i1 } @llvm.smul.with.overflow.i4(i4 %size, i4 %nmemb)

View File

@ -5,12 +5,11 @@ declare { i4, i1 } @llvm.umul.with.overflow.i4(i4, i4) #1
define i1 @t0_umul(i4 %size, i4 %nmemb) { define i1 @t0_umul(i4 %size, i4 %nmemb) {
; CHECK-LABEL: @t0_umul( ; CHECK-LABEL: @t0_umul(
; CHECK-NEXT: [[CMP:%.*]] = icmp eq i4 [[SIZE:%.*]], 0 ; CHECK-NEXT: [[NMEMB_FR:%.*]] = freeze i4 [[NMEMB:%.*]]
; CHECK-NEXT: [[UMUL:%.*]] = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 [[SIZE]], i4 [[NMEMB:%.*]]) ; CHECK-NEXT: [[UMUL:%.*]] = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 [[SIZE:%.*]], i4 [[NMEMB_FR]])
; CHECK-NEXT: [[UMUL_OV:%.*]] = extractvalue { i4, i1 } [[UMUL]], 1 ; CHECK-NEXT: [[UMUL_OV:%.*]] = extractvalue { i4, i1 } [[UMUL]], 1
; CHECK-NEXT: [[PHITMP:%.*]] = xor i1 [[UMUL_OV]], true ; CHECK-NEXT: [[PHITMP:%.*]] = xor i1 [[UMUL_OV]], true
; CHECK-NEXT: [[OR:%.*]] = select i1 [[CMP]], i1 true, i1 [[PHITMP]] ; CHECK-NEXT: ret i1 [[PHITMP]]
; CHECK-NEXT: ret i1 [[OR]]
; ;
%cmp = icmp eq i4 %size, 0 %cmp = icmp eq i4 %size, 0
%umul = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 %size, i4 %nmemb) %umul = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 %size, i4 %nmemb)

View File

@ -20,11 +20,10 @@ define i1 @t0_umul(i4 %size, i4 %nmemb) {
define i1 @t1_commutative(i4 %size, i4 %nmemb) { define i1 @t1_commutative(i4 %size, i4 %nmemb) {
; CHECK-LABEL: @t1_commutative( ; CHECK-LABEL: @t1_commutative(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i4 [[SIZE:%.*]], 0 ; CHECK-NEXT: [[NMEMB_FR:%.*]] = freeze i4 [[NMEMB:%.*]]
; CHECK-NEXT: [[UMUL:%.*]] = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 [[SIZE]], i4 [[NMEMB:%.*]]) ; CHECK-NEXT: [[UMUL:%.*]] = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 [[SIZE:%.*]], i4 [[NMEMB_FR]])
; CHECK-NEXT: [[UMUL_OV:%.*]] = extractvalue { i4, i1 } [[UMUL]], 1 ; CHECK-NEXT: [[UMUL_OV:%.*]] = extractvalue { i4, i1 } [[UMUL]], 1
; CHECK-NEXT: [[AND:%.*]] = select i1 [[CMP]], i1 [[UMUL_OV]], i1 false ; CHECK-NEXT: ret i1 [[UMUL_OV]]
; CHECK-NEXT: ret i1 [[AND]]
; ;
%cmp = icmp ne i4 %size, 0 %cmp = icmp ne i4 %size, 0
%umul = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 %size, i4 %nmemb) %umul = tail call { i4, i1 } @llvm.umul.with.overflow.i4(i4 %size, i4 %nmemb)