forked from OSchip/llvm-project
[libcxx testing] Remove ALLOW_RETRIES from two futures tests
These two tests do not use the "thread sleeps X milliseconds" pattern that other libcxx tests use, so all we can do in order to remove ALLOW_RETRIES workaround is remove the assumption that measuring the "quick" return of `wait()` is possible (it is not). Let the test harness verify overall that `wait()` does not hang. As a bonus, have the spin-waiting threads `yield()`, which is what well behaved code should do.
This commit is contained in:
parent
deea174ee5
commit
1858953395
|
@ -9,8 +9,6 @@
|
|||
// UNSUPPORTED: libcpp-has-no-threads
|
||||
// UNSUPPORTED: c++98, c++03
|
||||
|
||||
// ALLOW_RETRIES: 2
|
||||
|
||||
// <future>
|
||||
|
||||
// class shared_future<R>
|
||||
|
@ -32,104 +30,97 @@ std::atomic<WorkerThreadState> thread_state(WorkerThreadState::Uninitialized);
|
|||
|
||||
void set_worker_thread_state(WorkerThreadState state)
|
||||
{
|
||||
thread_state.store(state, std::memory_order_relaxed);
|
||||
thread_state.store(state, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
void wait_for_worker_thread_state(WorkerThreadState state)
|
||||
{
|
||||
while (thread_state.load(std::memory_order_relaxed) != state);
|
||||
while (thread_state.load(std::memory_order_relaxed) != state)
|
||||
std::this_thread::yield();
|
||||
}
|
||||
|
||||
void func1(std::promise<int> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value(3);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value(3);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
int j = 0;
|
||||
|
||||
void func3(std::promise<int&> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
j = 5;
|
||||
p.set_value(j);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
j = 5;
|
||||
p.set_value(j);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
void func5(std::promise<void> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value();
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value();
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
typedef std::chrono::high_resolution_clock Clock;
|
||||
{
|
||||
typedef int T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func1, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
typedef std::chrono::high_resolution_clock Clock;
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
{
|
||||
typedef int T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func1, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
{
|
||||
typedef int& T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func3, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
{
|
||||
typedef int& T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func3, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
{
|
||||
typedef void T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func5, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
{
|
||||
typedef void T;
|
||||
std::promise<T> p;
|
||||
std::shared_future<T> f = p.get_future();
|
||||
std::thread(func5, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -8,7 +8,6 @@
|
|||
//
|
||||
// UNSUPPORTED: libcpp-has-no-threads
|
||||
// UNSUPPORTED: c++98, c++03
|
||||
// ALLOW_RETRIES: 2
|
||||
|
||||
// <future>
|
||||
|
||||
|
@ -31,104 +30,96 @@ std::atomic<WorkerThreadState> thread_state(WorkerThreadState::Uninitialized);
|
|||
|
||||
void set_worker_thread_state(WorkerThreadState state)
|
||||
{
|
||||
thread_state.store(state, std::memory_order_relaxed);
|
||||
thread_state.store(state, std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
void wait_for_worker_thread_state(WorkerThreadState state)
|
||||
{
|
||||
while (thread_state.load(std::memory_order_relaxed) != state);
|
||||
while (thread_state.load(std::memory_order_relaxed) != state)
|
||||
std::this_thread::yield();
|
||||
}
|
||||
|
||||
void func1(std::promise<int> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value(3);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value(3);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
int j = 0;
|
||||
|
||||
void func3(std::promise<int&> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
j = 5;
|
||||
p.set_value(j);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
j = 5;
|
||||
p.set_value(j);
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
void func5(std::promise<void> p)
|
||||
{
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value();
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
wait_for_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
p.set_value();
|
||||
set_worker_thread_state(WorkerThreadState::Exiting);
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
typedef std::chrono::high_resolution_clock Clock;
|
||||
{
|
||||
typedef int T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func1, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
typedef std::chrono::high_resolution_clock Clock;
|
||||
{
|
||||
typedef int T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func1, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
{
|
||||
typedef int& T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func3, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
{
|
||||
typedef int& T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func3, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
{
|
||||
typedef void T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func5, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
{
|
||||
typedef void T;
|
||||
std::promise<T> p;
|
||||
std::future<T> f = p.get_future();
|
||||
std::thread(func5, std::move(p)).detach();
|
||||
assert(f.valid());
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::timeout);
|
||||
assert(f.valid());
|
||||
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
// allow the worker thread to produce the result and wait until the worker is done
|
||||
set_worker_thread_state(WorkerThreadState::AllowedToRun);
|
||||
wait_for_worker_thread_state(WorkerThreadState::Exiting);
|
||||
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
Clock::time_point t0 = Clock::now();
|
||||
f.wait();
|
||||
Clock::time_point t1 = Clock::now();
|
||||
assert(f.valid());
|
||||
assert(t1-t0 < ms(5));
|
||||
}
|
||||
assert(f.wait_until(Clock::now() + ms(10)) == std::future_status::ready);
|
||||
assert(f.valid());
|
||||
f.wait();
|
||||
assert(f.valid());
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue