forked from OSchip/llvm-project
Add an ArrayRecycler class.
This is similar to the existing Recycler allocator, but instead of recycling individual objects from a BumpPtrAllocator, arrays of different sizes can be allocated. llvm-svn: 171581
This commit is contained in:
parent
3a772ebbe4
commit
17a7d22d89
|
@ -0,0 +1,143 @@
|
|||
//==- llvm/Support/ArrayRecycler.h - Recycling of Arrays ---------*- C++ -*-==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the ArrayRecycler class template which can recycle small
|
||||
// arrays allocated from one of the allocators in Allocator.h
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_SUPPORT_ARRAY_RECYCLER_H
|
||||
#define LLVM_SUPPORT_ARRAY_RECYCLER_H
|
||||
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class BumpPtrAllocator;
|
||||
|
||||
/// Recycle small arrays allocated from a BumpPtrAllocator.
|
||||
///
|
||||
/// Arrays are allocated in a small number of fixed sizes. For each supported
|
||||
/// array size, the ArrayRecycler keeps a free list of available arrays.
|
||||
///
|
||||
template<class T, size_t Align = AlignOf<T>::Alignment>
|
||||
class ArrayRecycler {
|
||||
// The free list for a given array size is a simple singly linked list.
|
||||
// We can't use iplist or Recycler here since those classes can't be copied.
|
||||
struct FreeList {
|
||||
FreeList *Next;
|
||||
};
|
||||
|
||||
// Keep a free list for each array size.
|
||||
SmallVector<FreeList*, 8> Bucket;
|
||||
|
||||
// Remove an entry from the free list in Bucket[Idx] and return it.
|
||||
// Return NULL if no entries are available.
|
||||
T *pop(unsigned Idx) {
|
||||
if (Idx >= Bucket.size())
|
||||
return 0;
|
||||
FreeList *Entry = Bucket[Idx];
|
||||
if (!Entry)
|
||||
return 0;
|
||||
Bucket[Idx] = Entry->Next;
|
||||
return reinterpret_cast<T*>(Entry);
|
||||
}
|
||||
|
||||
// Add an entry to the free list at Bucket[Idx].
|
||||
void push(unsigned Idx, T *Ptr) {
|
||||
assert(Ptr && "Cannot recycle NULL pointer");
|
||||
assert(sizeof(T) >= sizeof(FreeList) && "Objects are too small");
|
||||
assert(Align >= AlignOf<FreeList>::Alignment && "Object underaligned");
|
||||
FreeList *Entry = reinterpret_cast<FreeList*>(Ptr);
|
||||
if (Idx >= Bucket.size())
|
||||
Bucket.resize(size_t(Idx) + 1);
|
||||
Entry->Next = Bucket[Idx];
|
||||
Bucket[Idx] = Entry;
|
||||
}
|
||||
|
||||
public:
|
||||
/// The size of an allocated array is represented by a Capacity instance.
|
||||
///
|
||||
/// This class is much smaller than a size_t, and it provides methods to work
|
||||
/// with the set of legal array capacities.
|
||||
class Capacity {
|
||||
uint8_t Index;
|
||||
explicit Capacity(uint8_t idx) : Index(idx) {}
|
||||
|
||||
public:
|
||||
Capacity() : Index(0) {}
|
||||
|
||||
/// Get the capacity of an array that can hold at least N elements.
|
||||
static Capacity get(size_t N) {
|
||||
return Capacity(N ? Log2_64_Ceil(N) : 0);
|
||||
}
|
||||
|
||||
/// Get the number of elements in an array with this capacity.
|
||||
size_t getSize() const { return size_t(1u) << Index; }
|
||||
|
||||
/// Get the bucket number for this capacity.
|
||||
unsigned getBucket() const { return Index; }
|
||||
|
||||
/// Get the next larger capacity. Large capacities grow exponentially, so
|
||||
/// this function can be used to reallocate incrementally growing vectors
|
||||
/// in amortized linear time.
|
||||
Capacity getNext() const { return Capacity(Index + 1); }
|
||||
};
|
||||
|
||||
~ArrayRecycler() {
|
||||
// The client should always call clear() so recycled arrays can be returned
|
||||
// to the allocator.
|
||||
assert(Bucket.empty() && "Non-empty ArrayRecycler deleted!");
|
||||
}
|
||||
|
||||
/// Release all the tracked allocations to the allocator. The recycler must
|
||||
/// be free of any tracked allocations before being deleted.
|
||||
template<class AllocatorType>
|
||||
void clear(AllocatorType &Allocator) {
|
||||
for (; !Bucket.empty(); Bucket.pop_back())
|
||||
while (T *Ptr = pop(Bucket.size() - 1))
|
||||
Allocator.Deallocate(Ptr);
|
||||
}
|
||||
|
||||
/// Special case for BumpPtrAllocator which has an empty Deallocate()
|
||||
/// function.
|
||||
///
|
||||
/// There is no need to traverse the free lists, pulling all the objects into
|
||||
/// cache.
|
||||
void clear(BumpPtrAllocator&) {
|
||||
Bucket.clear();
|
||||
}
|
||||
|
||||
/// Allocate an array of at least the requested capacity.
|
||||
///
|
||||
/// Return an existing recycled array, or allocate one from Allocator if
|
||||
/// none are available for recycling.
|
||||
///
|
||||
template<class AllocatorType>
|
||||
T *allocate(Capacity Cap, AllocatorType &Allocator) {
|
||||
// Try to recycle an existing array.
|
||||
if (T *Ptr = pop(Cap.getBucket()))
|
||||
return Ptr;
|
||||
// Nope, get more memory.
|
||||
return static_cast<T*>(Allocator.Allocate(sizeof(T)*Cap.getSize(), Align));
|
||||
}
|
||||
|
||||
/// Deallocate an array with the specified Capacity.
|
||||
///
|
||||
/// Cap must be the same capacity that was given to allocate().
|
||||
///
|
||||
void deallocate(Capacity Cap, T *Ptr) {
|
||||
push(Cap.getBucket(), Ptr);
|
||||
}
|
||||
};
|
||||
|
||||
} // end llvm namespace
|
||||
|
||||
#endif
|
|
@ -0,0 +1,109 @@
|
|||
//===--- unittest/Support/ArrayRecyclerTest.cpp ---------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Support/ArrayRecycler.h"
|
||||
#include "llvm/Support/Allocator.h"
|
||||
#include "gtest/gtest.h"
|
||||
#include <cstdlib>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
|
||||
struct Object {
|
||||
int Num;
|
||||
Object *Other;
|
||||
};
|
||||
typedef ArrayRecycler<Object> ARO;
|
||||
|
||||
TEST(ArrayRecyclerTest, Capacity) {
|
||||
// Capacity size should never be 0.
|
||||
ARO::Capacity Cap = ARO::Capacity::get(0);
|
||||
EXPECT_LT(0u, Cap.getSize());
|
||||
|
||||
size_t PrevSize = Cap.getSize();
|
||||
for (unsigned N = 1; N != 100; ++N) {
|
||||
Cap = ARO::Capacity::get(N);
|
||||
EXPECT_LE(N, Cap.getSize());
|
||||
if (PrevSize >= N)
|
||||
EXPECT_EQ(PrevSize, Cap.getSize());
|
||||
else
|
||||
EXPECT_LT(PrevSize, Cap.getSize());
|
||||
PrevSize = Cap.getSize();
|
||||
}
|
||||
|
||||
// Check that the buckets are monotonically increasing.
|
||||
Cap = ARO::Capacity::get(0);
|
||||
PrevSize = Cap.getSize();
|
||||
for (unsigned N = 0; N != 20; ++N) {
|
||||
Cap = Cap.getNext();
|
||||
EXPECT_LT(PrevSize, Cap.getSize());
|
||||
PrevSize = Cap.getSize();
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ArrayRecyclerTest, Basics) {
|
||||
BumpPtrAllocator Allocator;
|
||||
ArrayRecycler<Object> DUT;
|
||||
|
||||
ARO::Capacity Cap = ARO::Capacity::get(8);
|
||||
Object *A1 = DUT.allocate(Cap, Allocator);
|
||||
A1[0].Num = 21;
|
||||
A1[7].Num = 17;
|
||||
|
||||
Object *A2 = DUT.allocate(Cap, Allocator);
|
||||
A2[0].Num = 121;
|
||||
A2[7].Num = 117;
|
||||
|
||||
Object *A3 = DUT.allocate(Cap, Allocator);
|
||||
A3[0].Num = 221;
|
||||
A3[7].Num = 217;
|
||||
|
||||
EXPECT_EQ(21, A1[0].Num);
|
||||
EXPECT_EQ(17, A1[7].Num);
|
||||
EXPECT_EQ(121, A2[0].Num);
|
||||
EXPECT_EQ(117, A2[7].Num);
|
||||
EXPECT_EQ(221, A3[0].Num);
|
||||
EXPECT_EQ(217, A3[7].Num);
|
||||
|
||||
DUT.deallocate(Cap, A2);
|
||||
|
||||
// Check that deallocation didn't clobber anything.
|
||||
EXPECT_EQ(21, A1[0].Num);
|
||||
EXPECT_EQ(17, A1[7].Num);
|
||||
EXPECT_EQ(221, A3[0].Num);
|
||||
EXPECT_EQ(217, A3[7].Num);
|
||||
|
||||
// Verify recycling.
|
||||
Object *A2x = DUT.allocate(Cap, Allocator);
|
||||
EXPECT_EQ(A2, A2x);
|
||||
|
||||
DUT.deallocate(Cap, A2x);
|
||||
DUT.deallocate(Cap, A1);
|
||||
DUT.deallocate(Cap, A3);
|
||||
|
||||
// Objects are not required to be recycled in reverse deallocation order, but
|
||||
// that is what the current implementation does.
|
||||
Object *A3x = DUT.allocate(Cap, Allocator);
|
||||
EXPECT_EQ(A3, A3x);
|
||||
Object *A1x = DUT.allocate(Cap, Allocator);
|
||||
EXPECT_EQ(A1, A1x);
|
||||
Object *A2y = DUT.allocate(Cap, Allocator);
|
||||
EXPECT_EQ(A2, A2y);
|
||||
|
||||
// Back to allocation from the BumpPtrAllocator.
|
||||
Object *A4 = DUT.allocate(Cap, Allocator);
|
||||
EXPECT_NE(A1, A4);
|
||||
EXPECT_NE(A2, A4);
|
||||
EXPECT_NE(A3, A4);
|
||||
|
||||
DUT.clear(Allocator);
|
||||
}
|
||||
|
||||
} // end anonymous namespace
|
|
@ -6,6 +6,7 @@ set(LLVM_LINK_COMPONENTS
|
|||
add_llvm_unittest(SupportTests
|
||||
AlignOfTest.cpp
|
||||
AllocatorTest.cpp
|
||||
ArrayRecyclerTest.cpp
|
||||
BlockFrequencyTest.cpp
|
||||
Casting.cpp
|
||||
CommandLineTest.cpp
|
||||
|
|
Loading…
Reference in New Issue