diff --git a/llvm/unittests/ADT/APFloatTest.cpp b/llvm/unittests/ADT/APFloatTest.cpp index a273005cd1f3..83fb213109aa 100644 --- a/llvm/unittests/ADT/APFloatTest.cpp +++ b/llvm/unittests/ADT/APFloatTest.cpp @@ -1500,10 +1500,6 @@ TEST(APFloatTest, PPCDoubleDouble) { EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]); - test.divide(APFloat(APFloat::PPCDoubleDouble(), "3.0"), APFloat::rmNearestTiesToEven); - EXPECT_EQ(0x3fd5555555555555ull, test.bitcastToAPInt().getRawData()[0]); - EXPECT_EQ(0x3c75555555555556ull, test.bitcastToAPInt().getRawData()[1]); - // LDBL_MAX test = APFloat(APFloat::PPCDoubleDouble(), "1.79769313486231580793728971405301e+308"); EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]); @@ -3306,4 +3302,275 @@ TEST(APFloatTest, PPCDoubleDoubleSubtract) { .str(); } } + +TEST(APFloatTest, PPCDoubleDoubleMultiply) { + using DataType = std::tuple; + // TODO: Only a sanity check for now. Add more edge cases when the + // double-double algorithm is implemented. + DataType Data[] = { + // 1/3 * 3 = 1.0 + std::make_tuple(0x3fd5555555555555ull, 0x3c75555555555556ull, + 0x4008000000000000ull, 0, 0x3ff0000000000000ull, 0, + APFloat::rmNearestTiesToEven), + }; + + for (auto Tp : Data) { + uint64_t Op1[2], Op2[2], Expected[2]; + APFloat::roundingMode RM; + std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; + + APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); + APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); + A1.multiply(A2, RM); + + EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) + << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], + Op2[1]) + .str(); + EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) + << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], + Op2[1]) + .str(); + } +} + +TEST(APFloatTest, PPCDoubleDoubleDivide) { + using DataType = std::tuple; + // TODO: Only a sanity check for now. Add more edge cases when the + // double-double algorithm is implemented. + DataType Data[] = { + // 1 / 3 = 1/3 + std::make_tuple(0x3ff0000000000000ull, 0, 0x4008000000000000ull, 0, + 0x3fd5555555555555ull, 0x3c75555555555556ull, + APFloat::rmNearestTiesToEven), + }; + + for (auto Tp : Data) { + uint64_t Op1[2], Op2[2], Expected[2]; + APFloat::roundingMode RM; + std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; + + APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); + APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); + A1.divide(A2, RM); + + EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) + << formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], + Op2[1]) + .str(); + EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) + << formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], + Op2[1]) + .str(); + } +} + +TEST(APFloatTest, PPCDoubleDoubleRemainder) { + using DataType = + std::tuple; + DataType Data[] = { + // remainder(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53) + std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, + 0x3ff4000000000000ull, 0x3ca4000000000000ull, + 0x3fe0000000000000ull, 0x3c90000000000000ull), + // remainder(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53) + std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, + 0x3ffc000000000000ull, 0x3cac000000000000ull, + 0xbfe0000000000000ull, 0xbc90000000000000ull), + }; + + for (auto Tp : Data) { + uint64_t Op1[2], Op2[2], Expected[2]; + std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp; + + APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); + APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); + A1.remainder(A2); + + EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) + << formatv("remainder({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], + Op2[0], Op2[1]) + .str(); + EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) + << formatv("remainder(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], + Op1[1], Op2[0], Op2[1]) + .str(); + } +} + +TEST(APFloatTest, PPCDoubleDoubleMod) { + using DataType = + std::tuple; + DataType Data[] = { + // mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53) + std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, + 0x3ff4000000000000ull, 0x3ca4000000000000ull, + 0x3fe0000000000000ull, 0x3c90000000000000ull), + // mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53) + // 0xbc98000000000000 doesn't seem right, but it's what we currently have. + // TODO: investigate + std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, + 0x3ffc000000000000ull, 0x3cac000000000000ull, + 0x3ff4000000000001ull, 0xbc98000000000000ull), + }; + + for (auto Tp : Data) { + uint64_t Op1[2], Op2[2], Expected[2]; + std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp; + + APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); + APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); + A1.mod(A2); + + EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) + << formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], + Op2[0], Op2[1]) + .str(); + EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) + << formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], + Op2[0], Op2[1]) + .str(); + } +} + +TEST(APFloatTest, PPCDoubleDoubleFMA) { + // Sanity check for now. + APFloat A(APFloat::PPCDoubleDouble(), "2"); + A.fusedMultiplyAdd(APFloat(APFloat::PPCDoubleDouble(), "3"), + APFloat(APFloat::PPCDoubleDouble(), "4"), + APFloat::rmNearestTiesToEven); + EXPECT_EQ(APFloat::cmpEqual, + APFloat(APFloat::PPCDoubleDouble(), "10").compare(A)); +} + +TEST(APFloatTest, PPCDoubleDoubleRoundToIntegral) { + { + APFloat A(APFloat::PPCDoubleDouble(), "1.5"); + A.roundToIntegral(APFloat::rmNearestTiesToEven); + EXPECT_EQ(APFloat::cmpEqual, + APFloat(APFloat::PPCDoubleDouble(), "2").compare(A)); + } + { + APFloat A(APFloat::PPCDoubleDouble(), "2.5"); + A.roundToIntegral(APFloat::rmNearestTiesToEven); + EXPECT_EQ(APFloat::cmpEqual, + APFloat(APFloat::PPCDoubleDouble(), "2").compare(A)); + } +} + +TEST(APFloatTest, PPCDoubleDoubleCompare) { + using DataType = + std::tuple; + + DataType Data[] = { + // (1 + 0) = (1 + 0) + std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0, + APFloat::cmpEqual), + // (1 + 0) < (1.00...1 + 0) + std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0, + APFloat::cmpLessThan), + // (1.00...1 + 0) > (1 + 0) + std::make_tuple(0x3ff0000000000001ull, 0, 0x3ff0000000000000ull, 0, + APFloat::cmpGreaterThan), + // (1 + 0) < (1 + epsilon) + std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, + 0x0000000000000001ull, APFloat::cmpLessThan), + // NaN != NaN + std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0, + APFloat::cmpUnordered), + // (1 + 0) != NaN + std::make_tuple(0x3ff0000000000000ull, 0, 0x7ff8000000000000ull, 0, + APFloat::cmpUnordered), + // Inf = Inf + std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0, + APFloat::cmpEqual), + }; + + for (auto Tp : Data) { + uint64_t Op1[2], Op2[2]; + APFloat::cmpResult Expected; + std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp; + + APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); + APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); + EXPECT_EQ(Expected, A1.compare(A2)) + << formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], + Op2[1]) + .str(); + } +} + +TEST(APFloatTest, PPCDoubleDoubleChangeSign) { + uint64_t Data[] = { + 0x400f000000000000ull, 0xbcb0000000000000ull, + }; + APFloat Float(APFloat::PPCDoubleDouble(), APInt(128, 2, Data)); + { + APFloat Actual = + APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "1")); + EXPECT_EQ(0x400f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]); + EXPECT_EQ(0xbcb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]); + } + { + APFloat Actual = + APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "-1")); + EXPECT_EQ(0xc00f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]); + EXPECT_EQ(0x3cb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]); + } +} + +TEST(APFloatTest, PPCDoubleDoubleFactories) { + { + uint64_t Data[] = { + 0, 0, + }; + EXPECT_EQ(APInt(128, 2, Data), + APFloat::getZero(APFloat::PPCDoubleDouble()).bitcastToAPInt()); + } + { + uint64_t Data[] = { + 0x0000000000000001ull, 0, + }; + EXPECT_EQ( + APInt(128, 2, Data), + APFloat::getSmallest(APFloat::PPCDoubleDouble()).bitcastToAPInt()); + } + { + uint64_t Data[] = {0x0360000000000000ull, 0}; + EXPECT_EQ(APInt(128, 2, Data), + APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble()) + .bitcastToAPInt()); + } + { + uint64_t Data[] = { + 0x8000000000000000ull, 0x0000000000000000ull, + }; + EXPECT_EQ( + APInt(128, 2, Data), + APFloat::getZero(APFloat::PPCDoubleDouble(), true).bitcastToAPInt()); + } + { + uint64_t Data[] = { + 0x8000000000000001ull, 0x0000000000000000ull, + }; + EXPECT_EQ(APInt(128, 2, Data), + APFloat::getSmallest(APFloat::PPCDoubleDouble(), true) + .bitcastToAPInt()); + } + + EXPECT_EQ(0x8360000000000000ull, + APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true) + .bitcastToAPInt() + .getRawData()[0]); + EXPECT_EQ(0x0000000000000000ull, + APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true) + .getSecondFloat() + .bitcastToAPInt() + .getRawData()[0]); + + EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isSmallest()); + EXPECT_TRUE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isLargest()); +} }