[mlir][OpDSL] Add `TypeFn` class.

This revision introduces a the `TypeFn` class that similar to the `PrimFn` class contains an extensible set of type conversion functions. Having the same mechanism for both type conversion functions and arithmetic functions improves code consistency. Additionally, having an explicit function class and function name is a prerequisite to specify a conversion or arithmetic function via attribute. In a follow up commits, we will introduce function attributes to make OpDSL operations more generic. In particular, the goal is to handle signed and unsigned computation in one operations. Today, there is a linalg.matmul and a linalg.matmul_unsigned.

The commit implements the following changes:
- Introduce the class of type conversion functions `TypeFn`
- Replace the hardwired cast and cast_unsigned ops by the `TypeFn` counterparts
- Adapt the python and C++ code generation paths to support the new cast operations

Example:
```
cast(U, A[D.m, D.k])
```
changes to
```
TypeFn.cast(U, A[D.m, D.k])
```

Depends On D115237

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D115239
This commit is contained in:
gysit 2022-01-07 12:23:11 +00:00
parent babad7c566
commit 15757ea80a
17 changed files with 473 additions and 386 deletions

View File

@ -56,7 +56,7 @@ def matmul(A=TensorDef(T1, S.M, S.K),
"""
domain(D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
```
Here we have a simple type polymorphic contraction that takes arguments `A` and
@ -159,8 +159,8 @@ def pooling_poly(
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
strides=IndexAttrDef(S.SH, S.SW),
dilations=IndexAttrDef(S.DH, S.DW)):
O[D.n, D.oh, D.ow, D.c] += \
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
O[D.n, D.oh, D.ow, D.c] += TypeFn.cast(U,
I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
```
The pooling operation does not access the shape-only tensor `K`. Instead, the
@ -192,10 +192,18 @@ Reduction functions can appear as the outer-most function on the RHS:
* `ReduceFn.mul`
* `ReduceFn.max`
Additionally, type conversion functions cast an operand to a target type:
* `TypeFn.cast(TypeVar, operand)`
* `TypeFn.cast_unsigned(TypeVar, operand)`
As the integer types are signless, signedness is implement by different
functions that treat integers as signed (`TypeFn.cast`) or unsigned
(`TypeFn.cast_unsigned`) values.
There are also special forms:
* `cast(TypeVar, operand)` casts the `operand` to the target type `TypeVar`.
* `const(TypeVar, value)` returns a constant value of type `TypeVar`.
* `const(value)` returns a constant value.
* `index(dim)` returns the iteration index in the given dimension `dim`.
## Types
@ -206,18 +214,25 @@ output types of constructed ops. An exception are predefined types such as
computations with a type that is independent of the input and output types. For
example, parts of floating point computation may require double precision
arithmetic despite all inputs and outputs being single precision values.
Assignment expressions with no `cast` calls will generally require uniform types
throughout and will fail to verify if violated. The presence of a `cast` allows
for a limited form of numeric type conversion between element types that can be
derived from inputs and outputs (and in the future, attributes). `cast` calls
with a `TypeVar` first argument are emitted as `symbolic_cast` primitives in the
YAML definition.
Assignment expressions with no `TypeFn.cast` calls will generally require
uniform types throughout and will fail to verify if violated. The presence of a
`TypeFn.cast` or `TypeFn.cast_unsigned` allows for a limited form of numeric
type conversion between element types that can be derived from inputs and
outputs (and in the future, attributes). `TypeFn.cast` calls with a `TypeVar`
first argument are emitted as `type_fn` primitives in the YAML definition.
Casting will perform `int<->float` and `index->int` type conversions and will
perform any necessary extension or truncation within type family. Note that
presently, any integer type is assumed to be signed for the purpose of
determining how to extend or truncate. Supporting unsigned integer types is left
for future work.
perform any necessary extension or truncation within the type family. The
integer types themselves are signless and signedness is implemented by
functions/operations. The `TypeFn.cast` function treats all integers as signed,
while `TypeFn.cast_unsigned` treats them as unsigned.
The following examples illustrate the lowering of signed and unsigned functions:
* cast(I32 -> I64) -> `arith.ExtSIOp`
* cast(F32 -> I32) -> `arith.FPToSIOp`
* cast_unsigned(I32 -> I64) -> `arith.ExtUIOp`
* cast_unsigned(F32 -> I32) -> `arith.FPToUIOp`
Not all functions are applicable for all numeric types, and on mismatch, op
verification will fail.

View File

@ -51,19 +51,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: matmul_unsigned
@ -115,19 +115,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: true
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: true
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
@ -193,37 +193,37 @@ structured_op: !LinalgStructuredOpConfig
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: AZp
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: BZp
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: mmt4d
@ -286,19 +286,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: AccumType
operands:
- !ScalarExpression
scalar_arg: lhs
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: AccumType
operands:
- !ScalarExpression
scalar_arg: rhs
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: batch_matmul
@ -351,19 +351,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_batch_matmul
@ -430,37 +430,37 @@ structured_op: !LinalgStructuredOpConfig
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: AZp
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: BZp
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: matvec
@ -511,19 +511,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: y
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: vecmat
@ -574,19 +574,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: y
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: batch_matvec
@ -638,19 +638,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: dot
@ -700,19 +700,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_1d
@ -763,19 +763,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d
@ -828,19 +828,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_3d
@ -896,19 +896,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_1d_nwc_wcf
@ -974,19 +974,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d_nhwc_hwcf
@ -1064,19 +1064,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d_nhwc_hwcf_q
@ -1171,37 +1171,37 @@ structured_op: !LinalgStructuredOpConfig
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: IZp
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: KZp
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_2d_nchw_fchw
@ -1279,19 +1279,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: conv_3d_ndhwc_dhwcf
@ -1369,19 +1369,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv_1d_nwc_wc
@ -1446,19 +1446,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv_2d_nhwc_hwc
@ -1529,19 +1529,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv_2d_nhwc_hwc_q
@ -1627,37 +1627,37 @@ structured_op: !LinalgStructuredOpConfig
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: IZp
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: KZp
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv_2d_nhwc_hwcm
@ -1731,19 +1731,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: mul
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: depthwise_conv_2d_nhwc_hwcm_q
@ -1833,37 +1833,37 @@ structured_op: !LinalgStructuredOpConfig
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: IZp
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: sub
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: K
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: KZp
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_sum
@ -1929,12 +1929,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_max
@ -2000,12 +2000,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_max_unsigned
@ -2071,12 +2071,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: true
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nchw_max
@ -2142,12 +2142,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_min
@ -2213,12 +2213,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_min_unsigned
@ -2284,12 +2284,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: true
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_ndhwc_sum
@ -2361,12 +2361,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_ndhwc_max
@ -2438,12 +2438,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_ndhwc_min
@ -2515,12 +2515,12 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: fill_rng_2d
@ -2567,7 +2567,8 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarAssign
arg: O
value: !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: T
operands:
- !ScalarExpression
@ -2583,14 +2584,15 @@ structured_op: !LinalgStructuredOpConfig
fn_name: add
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: F64
operands:
- !ScalarExpression
scalar_const: '2147483647 : i64'
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: F64
operands:
- !ScalarExpression
@ -2606,12 +2608,12 @@ structured_op: !LinalgStructuredOpConfig
fn_name: add
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_index: 1
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: add
@ -2625,43 +2627,42 @@ structured_op: !LinalgStructuredOpConfig
fn_name: add
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_index: 0
is_unsigned_cast: false
- !ScalarExpression
scalar_arg: seed
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_const: '1103515245 : i64'
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_const: '12345 : i64'
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_const: '1103515245 : i64'
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: I32
operands:
- !ScalarExpression
scalar_const: '12345 : i64'
is_unsigned_cast: false
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: mul
@ -2675,15 +2676,14 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: min
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: F64
operands:
- !ScalarExpression
scalar_const: '2.3283063999999999E-10 : f64'
is_unsigned_cast: false
- !ScalarExpression
scalar_arg: min
is_unsigned_cast: false
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: soft_plus_2d
@ -2724,20 +2724,20 @@ structured_op: !LinalgStructuredOpConfig
fn_name: add
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_const: '1.000000e+00 : f64'
is_unsigned_cast: false
- !ScalarExpression
scalar_apply:
fn_name: exp
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
is_unsigned_cast: false

View File

@ -147,11 +147,13 @@ static LogicalResult foldMemRefCastInTiledLoopOp(TiledLoopOp op) {
// Region builder helper.
// TODO: Move this to a utility library.
// The public methods on this class are referenced directly from generated code
// and bind by name to math functions in the DSL as:
// and bind by name to math and type conversion functions in the DSL as:
// `applyfn__{fnName}`
// `typefn__{fnName}`
// Examples:
// `applyfn__add`
// `applyfn__mul`
// `typefn__cast`
// The naming convention is intentional in order to match snake-cased DSL names.
// See mlir-linalg-ods-yaml-gen.cpp for the code that mates to this class.
//
@ -228,6 +230,16 @@ public:
return operand;
}
// NOLINTNEXTLINE(*-identifier-naming): externally called.
Value typefn__cast(Type toType, Value operand) {
return cast(toType, operand, false);
}
// NOLINTNEXTLINE(*-identifier-naming): externally called.
Value typefn__cast_unsigned(Type toType, Value operand) {
return cast(toType, operand, true);
}
// NOLINTNEXTLINE(*-identifier-naming): externally called.
Value applyfn__add(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();

View File

@ -314,6 +314,39 @@ class Comprehension:
return f"{defs_repr} = {values_repr}"
class TypeFnType:
"""Type conversion function.
A type conversion function takes a target type and a tensor expression and
returns the casted tensor expression.
"""
def __init__(self, fn_name: str):
self.fn_name = fn_name
def __call__(self, type_var: TypeVar,
arg: TensorExpression) -> "TensorTypeFn":
return TensorTypeFn(self, type_var, arg)
def __repr__(self):
return f"{self.fn_name}"
class TypeFn:
"""Type conversion function namespace.
As the integer types are signless, signedness is implement by different cast
functions that treat integers as signed (`cast`) or unsigned
(`cast_unsigned`) values.
Examples:
- cast(I32 -> I64) -> `arith.ExtSIOp`
- cast_unsigned(I32 -> I64) -> `arith.ExtUIOp`
"""
cast = TypeFnType("cast")
cast_unsigned = TypeFnType("cast_unsigned")
class PrimFnType:
"""Primitive operations."""
@ -391,6 +424,26 @@ class PrimApply(TensorExpression):
return f"{repr(self.prim)}({', '.join(repr(a) for a in self.args)})"
class TensorTypeFn(TensorExpression):
"""Application of a type conversion function."""
def __init__(self, type_fn: TypeFn, type_var: TypeVar, arg: TensorExpression):
self.type_fn = type_fn
self.type_var = type_var
self.arg = arg
def to_scalar_expression(self) -> ScalarExpression:
return ScalarTypeFn(self.type_fn.fn_name, self.type_var,
self.arg.to_scalar_expression()).expr()
def visit_tensor_exprs(self, callback):
super().visit_tensor_exprs(callback)
self.arg.visit_tensor_exprs(callback)
def __repr__(self):
return f"{repr(self.type_fn)}({type_var}, {self.arg})"
class const(TensorExpression):
"""Returns the given constant floating point or integer value."""
@ -433,36 +486,6 @@ class index(TensorExpression):
return f"index({repr(self.dim)})"
class cast(TensorExpression):
"""Casts the element type to a type (typically symbolic TypeVar)."""
def __init__(self, to_type: TypeVar, operand: TensorExpression):
self.to_type = to_type
self.operand = operand
def to_scalar_expression(self) -> ScalarExpression:
return ScalarSymbolicCast(self.to_type, self.operand.to_scalar_expression(),
False).expr()
def visit_tensor_exprs(self, callback):
super().visit_tensor_exprs(callback)
self.operand.visit_tensor_exprs(callback)
def __repr__(self):
return f"cast({self.to_type}, {repr(self.operand)})"
class cast_unsigned(cast):
"""Casts the element type to an unsigned type (typically symbolic TypeVar)."""
def to_scalar_expression(self) -> ScalarExpression:
return ScalarSymbolicCast(self.to_type, self.operand.to_scalar_expression(),
True).expr()
def __repr__(self):
return f"cast_unsigned({self.to_type}, {repr(self.operand)})"
class ReduceApply(TensorExpression):
"""Application of a reduction.

View File

@ -2,7 +2,7 @@
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from typing import Dict, List, Sequence, Tuple, Union
from typing import Callable, Dict, List, Sequence, Tuple, Union
from .....ir import *
@ -24,6 +24,7 @@ __all__ = [
ValueList = Union[Sequence[Value], OpResultList]
def isa(cls: Type, ty: Type):
try:
cls(ty)
@ -221,24 +222,38 @@ class _BodyBuilder:
IntegerType.get_signless(64), expr.scalar_index.dim)
return linalg.IndexOp(dim_attr).result
elif expr.scalar_apply:
try:
fn = getattr(self, f"_eval_{expr.scalar_apply.fn_name}")
except AttributeError:
raise ValueError(
f"Function '{expr.scalar_apply.fn_name}' is not a known "
"scalar body function")
fn = self._get_function(f"_eval_{expr.scalar_apply.fn_name}")
operand_values = [
self.expression(operand) for operand in expr.scalar_apply.operands
]
return fn(*operand_values)
elif expr.symbolic_cast:
operand_value = self.expression(expr.symbolic_cast.operand)
return self.cast(expr.symbolic_cast.to_type.name, operand_value,
expr.symbolic_cast.is_unsigned_cast)
elif expr.type_fn:
fn = self._get_function(f"_typefn_{expr.type_fn.fn_name}")
operand = self.expression(expr.type_fn.operand)
return fn(expr.type_fn.type_var.name, operand)
raise NotImplementedError(f"Unimplemented scalar body expression: {expr}")
def cast(self, type_var_name: str, operand: Value,
is_unsigned_cast: bool) -> Value:
def yield_outputs(self, *output_names: str):
output_values = []
for n in output_names:
try:
output_values.append(self.yield_mapping[n])
except KeyError:
raise ValueError(f"Body assignments do not assign all outputs: "
f"missing '{n}'")
linalg.YieldOp(output_values)
def _get_function(self, fn_name: str) -> Callable:
try:
fn = getattr(self, f"{fn_name}")
except AttributeError:
raise ValueError(f"Function '{fn_name}' is not a known function")
return fn
def _cast(self,
type_var_name: str,
operand: Value,
is_unsigned_cast: bool = False) -> Value:
try:
to_type = self.type_mapping[type_var_name]
except KeyError:
@ -289,15 +304,11 @@ class _BodyBuilder:
raise ValueError(f"Unable to cast body expression from {operand_type} to "
f"{to_type}")
def yield_outputs(self, *output_names: str):
output_values = []
for n in output_names:
try:
output_values.append(self.yield_mapping[n])
except KeyError:
raise ValueError(f"Body assignments do not assign all outputs: "
f"missing '{n}'")
linalg.YieldOp(output_values)
def _typefn_cast(self, type_var_name: str, operand: Value) -> Value:
return self._cast(type_var_name, operand, False)
def _typefn_cast_unsigned(self, type_var_name: str, operand: Value) -> Value:
return self._cast(type_var_name, operand, True)
def _eval_add(self, lhs: Value, rhs: Value) -> Value:
if _is_floating_point_type(lhs.type):

View File

@ -21,11 +21,11 @@ from .types import *
__all__ = [
"ScalarAssign",
"ScalarApplyFn",
"ScalarTypeFn",
"ScalarArg",
"ScalarConst",
"ScalarIndex",
"ScalarExpression",
"ScalarSymbolicCast",
]
@ -43,6 +43,22 @@ class ScalarApplyFn:
return f"ScalarApplyFn<{self.fn_name}>({', '.join(self.operands)})"
class ScalarTypeFn:
"""A type of ScalarExpression that applies a type conversion function."""
def __init__(self, fn_name: str, type_var: TypeVar,
operand: "ScalarExpression"):
self.fn_name = fn_name
self.type_var = type_var
self.operand = operand
def expr(self) -> "ScalarExpression":
return ScalarExpression(type_fn=self)
def __repr__(self):
return f"ScalarTypeFn<{self.fn_name}>({self.type_var}, {self.operand})"
class ScalarArg:
"""A type of ScalarExpression that references a named argument."""
@ -82,27 +98,12 @@ class ScalarIndex:
return f"(ScalarIndex({self.dim})"
class ScalarSymbolicCast:
"""A type of ScalarExpression that symbolically casts an operand to a TypeVar."""
def __init__(self, to_type: TypeVar, operand: "ScalarExpression",
is_unsigned_cast: bool):
self.to_type = to_type
self.operand = operand
self.is_unsigned_cast = is_unsigned_cast
def expr(self) -> "ScalarExpression":
return ScalarExpression(symbolic_cast=self)
def __repr__(self):
return f"ScalarSymbolicCast({self.to_type}, {self.operand}, {self.is_unsigned_cast})"
class ScalarExpression(YAMLObject):
"""An expression on scalar values.
Can be one of:
- ScalarApplyFn
- ScalarTypeFn
- ScalarArg
- ScalarConst
- ScalarIndex
@ -112,19 +113,19 @@ class ScalarExpression(YAMLObject):
def __init__(self,
scalar_apply: Optional[ScalarApplyFn] = None,
type_fn: Optional[ScalarTypeFn] = None,
scalar_arg: Optional[ScalarArg] = None,
scalar_const: Optional[ScalarConst] = None,
scalar_index: Optional[ScalarIndex] = None,
symbolic_cast: Optional[ScalarSymbolicCast] = None):
if (bool(scalar_apply) + bool(scalar_arg) + bool(scalar_const) +
bool(scalar_index) + bool(symbolic_cast)) != 1:
raise ValueError("One of 'scalar_apply', 'scalar_arg', 'scalar_const', "
"'scalar_index', 'symbolic_cast' must be specified")
scalar_index: Optional[ScalarIndex] = None):
if (bool(scalar_apply) + bool(type_fn) + bool(scalar_arg) +
bool(scalar_const) + bool(scalar_index)) != 1:
raise ValueError("One of 'scalar_apply', 'type_fn', 'scalar_arg', "
"'scalar_const', 'scalar_index', must be specified")
self.scalar_apply = scalar_apply
self.type_fn = type_fn
self.scalar_arg = scalar_arg
self.scalar_const = scalar_const
self.scalar_index = scalar_index
self.symbolic_cast = symbolic_cast
def to_yaml_custom_dict(self):
if self.scalar_apply:
@ -133,21 +134,22 @@ class ScalarExpression(YAMLObject):
fn_name=self.scalar_apply.fn_name,
operands=list(self.scalar_apply.operands),
))
if self.type_fn:
# Note that even though operands must be arity 1, we write it the
# same way as for apply because it allows handling code to be more
# generic vs having a special form.
return dict(
type_fn=dict(
fn_name=self.type_fn.fn_name,
type_var=self.type_fn.type_var.name,
operands=[self.type_fn.operand],
))
elif self.scalar_arg:
return dict(scalar_arg=self.scalar_arg.arg)
elif self.scalar_const:
return dict(scalar_const=self.scalar_const.value)
elif self.scalar_index:
return dict(scalar_index=self.scalar_index.dim)
elif self.symbolic_cast:
# Note that even though operands must be arity 1, we write it the
# same way as for apply because it allows handling code to be more
# generic vs having a special form.
return dict(
symbolic_cast=dict(
type_var=self.symbolic_cast.to_type.name,
operands=[self.symbolic_cast.operand],
is_unsigned_cast=self.symbolic_cast.is_unsigned_cast))
else:
raise ValueError(f"Unexpected ScalarExpression type: {self}")

View File

@ -18,7 +18,7 @@ def matmul(
"""
domain(D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
@linalg_structured_op
@ -33,7 +33,8 @@ def matmul_unsigned(
"""
domain(D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.m, D.n] += cast_unsigned(U, A[D.m, D.k]) * cast_unsigned(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast_unsigned(U, A[D.m, D.k]) * TypeFn.cast_unsigned(
U, B[D.k, D.n])
@linalg_structured_op
@ -51,8 +52,8 @@ def quantized_matmul(
matmul.
"""
domain(D.m, D.n, D.k)
C[D.m, D.n] += (cast(U, A[D.m, D.k]) - cast(U, AZp)) * (
cast(U, B[D.k, D.n]) - cast(U, BZp))
C[D.m, D.n] += (TypeFn.cast(U, A[D.m, D.k]) - TypeFn.cast(U, AZp)) * (
TypeFn.cast(U, B[D.k, D.n]) - TypeFn.cast(U, BZp))
@linalg_structured_op
@ -72,9 +73,9 @@ def mmt4d(
"""
domain(D.m, D.n, D.k, D.m0, D.n0, D.k0)
implements(ContractionOpInterface)
accum[D.m, D.n, D.m0,
D.n0] += cast(TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * cast(
TV.AccumType, rhs[D.n, D.k, D.n0, D.k0])
accum[D.m, D.n, D.m0, D.n0] += TypeFn.cast(
TV.AccumType, lhs[D.m, D.k, D.m0, D.k0]) * TypeFn.cast(
TV.AccumType, rhs[D.n, D.k, D.n0, D.k0])
@linalg_structured_op
@ -89,7 +90,8 @@ def batch_matmul(
"""
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += cast(U, A[D.b, D.m, D.k]) * cast(U, B[D.b, D.k, D.n])
C[D.b, D.m,
D.n] += TypeFn.cast(U, A[D.b, D.m, D.k]) * TypeFn.cast(U, B[D.b, D.k, D.n])
@linalg_structured_op
@ -107,8 +109,9 @@ def quantized_batch_matmul(
matmul.
"""
domain(D.b, D.m, D.n, D.k)
C[D.b, D.m, D.n] += (cast(U, A[D.b, D.m, D.k]) - cast(U, AZp)) * (
cast(U, B[D.b, D.k, D.n]) - cast(U, BZp))
C[D.b, D.m,
D.n] += (TypeFn.cast(U, A[D.b, D.m, D.k]) - TypeFn.cast(U, AZp)) * (
TypeFn.cast(U, B[D.b, D.k, D.n]) - TypeFn.cast(U, BZp))
@linalg_structured_op
@ -123,7 +126,7 @@ def matvec(
"""
domain(D.m, D.n)
implements(ContractionOpInterface)
x[D.m] += cast(U, A[D.m, D.n]) * cast(U, y[D.n])
x[D.m] += TypeFn.cast(U, A[D.m, D.n]) * TypeFn.cast(U, y[D.n])
@linalg_structured_op
@ -138,7 +141,7 @@ def vecmat(
"""
domain(D.n, D.m)
implements(ContractionOpInterface)
x[D.n] += cast(U, y[D.m]) * cast(U, A[D.m, D.n])
x[D.n] += TypeFn.cast(U, y[D.m]) * TypeFn.cast(U, A[D.m, D.n])
@linalg_structured_op
@ -153,7 +156,7 @@ def batch_matvec(
"""
domain(D.b, D.m, D.k)
implements(ContractionOpInterface)
C[D.b, D.m] += cast(U, A[D.b, D.m, D.k]) * cast(U, B[D.b, D.k])
C[D.b, D.m] += TypeFn.cast(U, A[D.b, D.m, D.k]) * TypeFn.cast(U, B[D.b, D.k])
@linalg_structured_op
@ -165,7 +168,7 @@ def dot(
them to the same data type as the accumulator/output.
"""
implements(ContractionOpInterface)
C[None] += cast(U, A[D.m]) * cast(U, B[D.m])
C[None] += TypeFn.cast(U, A[D.m]) * TypeFn.cast(U, B[D.m])
@linalg_structured_op
@ -180,7 +183,7 @@ def conv_1d(
"""
implements(ConvolutionOpInterface)
domain(D.ow, D.kw)
O[D.ow] += cast(U, I[D.ow + D.kw]) * cast(U, K[D.kw])
O[D.ow] += TypeFn.cast(U, I[D.ow + D.kw]) * TypeFn.cast(U, K[D.kw])
@linalg_structured_op
@ -195,7 +198,8 @@ def conv_2d(
"""
implements(ConvolutionOpInterface)
domain(D.oh, D.ow, D.kh, D.kw)
O[D.oh, D.ow] += cast(U, I[D.oh + D.kh, D.ow + D.kw]) * cast(U, K[D.kh, D.kw])
O[D.oh, D.ow] += TypeFn.cast(U, I[D.oh + D.kh, D.ow + D.kw]) * TypeFn.cast(
U, K[D.kh, D.kw])
@linalg_structured_op
@ -211,8 +215,8 @@ def conv_3d(
implements(ConvolutionOpInterface)
domain(D.od, D.oh, D.ow, D.kd, D.kh, D.kw)
O[D.od, D.oh,
D.ow] += cast(U, I[D.od + D.kd, D.oh + D.kh, D.ow + D.kw]) * cast(
U, K[D.kd, D.kh, D.kw])
D.ow] += TypeFn.cast(U, I[D.od + D.kd, D.oh + D.kh, D.ow +
D.kw]) * TypeFn.cast(U, K[D.kd, D.kh, D.kw])
@linalg_structured_op
@ -229,8 +233,9 @@ def conv_1d_nwc_wcf(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.ow, D.f, D.kw, D.c)
O[D.n, D.ow, D.f] += cast(U, I[D.n, D.ow * S.SW + D.kw * S.DW, D.c]) * cast(
U, K[D.kw, D.c, D.f])
O[D.n, D.ow,
D.f] += TypeFn.cast(U, I[D.n, D.ow * S.SW + D.kw * S.DW,
D.c]) * TypeFn.cast(U, K[D.kw, D.c, D.f])
@linalg_structured_op
@ -252,9 +257,9 @@ def conv_2d_nhwc_hwcf(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.f, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.f] += cast(
O[D.n, D.oh, D.ow, D.f] += TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]) * cast(U, K[D.kh, D.kw, D.c, D.f])
D.c]) * TypeFn.cast(U, K[D.kh, D.kw, D.c, D.f])
@linalg_structured_op
@ -280,10 +285,10 @@ def conv_2d_nhwc_hwcf_q(
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.f, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow,
D.f] += (cast(
D.f] += (TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]) -
cast(U, IZp)) * (
cast(U, K[D.kh, D.kw, D.c, D.f]) - cast(U, KZp))
TypeFn.cast(U, IZp)) * (
TypeFn.cast(U, K[D.kh, D.kw, D.c, D.f]) - TypeFn.cast(U, KZp))
@linalg_structured_op
@ -305,9 +310,9 @@ def conv_2d_nchw_fchw(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.f, D.oh, D.ow, D.c, D.kh, D.kw)
O[D.n, D.f, D.oh, D.ow] += cast(
O[D.n, D.f, D.oh, D.ow] += TypeFn.cast(
U, I[D.n, D.c, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW]) * cast(U, K[D.f, D.c, D.kh, D.kw])
D.ow * S.SW + D.kw * S.DW]) * TypeFn.cast(U, K[D.f, D.c, D.kh, D.kw])
@linalg_structured_op
@ -325,9 +330,9 @@ def conv_3d_ndhwc_dhwcf(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.od, D.oh, D.ow, D.f, D.kd, D.kh, D.kw, D.c)
O[D.n, D.od, D.oh, D.ow, D.f] += cast(
O[D.n, D.od, D.oh, D.ow, D.f] += TypeFn.cast(
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW, D.c]) * cast(
D.ow * S.SW + D.kw * S.DW, D.c]) * TypeFn.cast(
U, K[D.kd, D.kh, D.kw, D.c, D.f])
@ -347,8 +352,8 @@ def depthwise_conv_1d_nwc_wc(
implements(ConvolutionOpInterface)
domain(D.n, D.ow, D.ic, D.kw)
O[D.n, D.ow, D.ic] += \
cast(U, I[D.n, D.ow * S.SW + D.kw * S.DW, D.ic]) * \
cast(U, K[D.kw, D.ic])
TypeFn.cast(U, I[D.n, D.ow * S.SW + D.kw * S.DW, D.ic]) * \
TypeFn.cast(U, K[D.kw, D.ic])
@linalg_structured_op
@ -367,9 +372,9 @@ def depthwise_conv_2d_nhwc_hwc(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.ic, D.kh, D.kw)
O[D.n, D.oh, D.ow, D.ic] += cast(
O[D.n, D.oh, D.ow, D.ic] += TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.ic]) * cast(U, K[D.kh, D.kw, D.ic])
D.ic]) * TypeFn.cast(U, K[D.kh, D.kw, D.ic])
@linalg_structured_op
@ -389,10 +394,11 @@ def depthwise_conv_2d_nhwc_hwc_q(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.ic, D.kh, D.kw)
O[D.n, D.oh, D.ow, D.ic] += (
(cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.ic]) - cast(U, IZp)) *
(cast(U, K[D.kh, D.kw, D.ic]) - cast(U, KZp)))
O[D.n, D.oh, D.ow,
D.ic] += ((TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.ic]) -
TypeFn.cast(U, IZp)) *
(TypeFn.cast(U, K[D.kh, D.kw, D.ic]) - TypeFn.cast(U, KZp)))
@linalg_structured_op
@ -410,9 +416,9 @@ def depthwise_conv_2d_nhwc_hwcm(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.ic, D.cm, D.kh, D.kw)
O[D.n, D.oh, D.ow, D.ic, D.cm] += cast(
O[D.n, D.oh, D.ow, D.ic, D.cm] += TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.ic]) * cast(U, K[D.kh, D.kw, D.ic, D.cm])
D.ic]) * TypeFn.cast(U, K[D.kh, D.kw, D.ic, D.cm])
@linalg_structured_op
@ -432,10 +438,11 @@ def depthwise_conv_2d_nhwc_hwcm_q(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.ic, D.cm, D.kh, D.kw)
O[D.n, D.oh, D.ow, D.ic, D.cm] += (
(cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.ic]) - cast(U, IZp)) *
(cast(U, K[D.kh, D.kw, D.ic, D.cm]) - cast(U, KZp)))
O[D.n, D.oh, D.ow, D.ic,
D.cm] += ((TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.ic]) -
TypeFn.cast(U, IZp)) *
(TypeFn.cast(U, K[D.kh, D.kw, D.ic, D.cm]) - TypeFn.cast(U, KZp)))
@linalg_structured_op
@ -453,7 +460,7 @@ def pooling_nhwc_sum(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] += cast(
O[D.n, D.oh, D.ow, D.c] += TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
@ -473,8 +480,8 @@ def pooling_nhwc_max(
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@linalg_structured_op
@ -493,7 +500,7 @@ def pooling_nhwc_max_unsigned(
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max_unsigned(D.kh, D.kw)(
cast_unsigned(
TypeFn.cast_unsigned(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@ -513,8 +520,9 @@ def pooling_nchw_max(
implements(ConvolutionOpInterface)
domain(D.n, D.c, D.oh, D.ow, D.kh, D.kw)
O[D.n, D.c, D.oh, D.ow] = ReduceFn.max(D.kh, D.kw)(
cast(U, I[D.n, D.c, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW,]))
TypeFn.cast(
U, I[D.n, D.c, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW,]))
@linalg_structured_op
@ -533,8 +541,8 @@ def pooling_nhwc_min(
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@linalg_structured_op
@ -553,7 +561,7 @@ def pooling_nhwc_min_unsigned(
implements(ConvolutionOpInterface)
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min_unsigned(D.kh, D.kw)(
cast_unsigned(
TypeFn.cast_unsigned(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@ -572,7 +580,7 @@ def pooling_ndhwc_sum(
"""
implements(ConvolutionOpInterface)
domain(D.n, D.od, D.oh, D.ow, D.kd, D.kh, D.kw, D.c)
O[D.n, D.od, D.oh, D.ow, D.c] += cast(
O[D.n, D.od, D.oh, D.ow, D.c] += TypeFn.cast(
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW, D.c])
@ -593,7 +601,7 @@ def pooling_ndhwc_max(
implements(ConvolutionOpInterface)
domain(D.n, D.od, D.oh, D.ow, D.kd, D.kh, D.kw, D.c)
O[D.n, D.od, D.oh, D.ow, D.c] = ReduceFn.max(D.kd, D.kh, D.kw)(
cast(
TypeFn.cast(
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW, D.c]))
@ -614,7 +622,7 @@ def pooling_ndhwc_min(
implements(ConvolutionOpInterface)
domain(D.n, D.od, D.oh, D.ow, D.kd, D.kh, D.kw, D.c)
O[D.n, D.od, D.oh, D.ow, D.c] = ReduceFn.min(D.kd, D.kh, D.kw)(
cast(
TypeFn.cast(
U, I[D.n, D.od * S.SD + D.kd * S.DD, D.oh * S.SH + D.kh * S.DH,
D.ow * S.SW + D.kw * S.DW, D.c]))
@ -636,14 +644,15 @@ def fill_rng_2d(
the range of the generated random numbers.
"""
domain(D.m, D.n)
multiplier = cast(I32, const(1103515245))
increment = cast(I32, const(12345))
rand1 = (cast(I32, index(D.m)) + seed) * multiplier + increment
rand2 = (cast(I32, index(D.n)) + rand1) * multiplier + increment
inv_range = cast(F64, const(2.3283064e-10))
offset = cast(F64, const(2147483647))
multiplier = TypeFn.cast(I32, const(1103515245))
increment = TypeFn.cast(I32, const(12345))
rand1 = (TypeFn.cast(I32, index(D.m)) + seed) * multiplier + increment
rand2 = (TypeFn.cast(I32, index(D.n)) + rand1) * multiplier + increment
inv_range = TypeFn.cast(F64, const(2.3283064e-10))
offset = TypeFn.cast(F64, const(2147483647))
scaling = (max - min) * inv_range
O[D.m, D.n] = cast(T, (offset + cast(F64, rand2)) * scaling + min)
O[D.m, D.n] = TypeFn.cast(T,
(offset + TypeFn.cast(F64, rand2)) * scaling + min)
@linalg_structured_op
@ -656,4 +665,4 @@ def soft_plus_2d(
"""
domain(D.m, D.n)
O[D.m, D.n] = \
PrimFn.log(cast(U, const(1.0)) + PrimFn.exp(cast(U, I[D.m, D.n])))
PrimFn.log(TypeFn.cast(U, const(1.0)) + PrimFn.exp(TypeFn.cast(U, I[D.m, D.n])))

View File

@ -38,19 +38,19 @@ structured_op: !LinalgStructuredOpConfig
fn_name: add
operands:
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast
type_var: T
operands:
- !ScalarExpression
scalar_const: '42 : i64'
is_unsigned_cast: false
- !ScalarExpression
symbolic_cast:
type_fn:
fn_name: cast_unsigned
type_var: T
operands:
- !ScalarExpression
scalar_index: 1
is_unsigned_cast: true
# ODS-LABEL: def Test1Op : LinalgStructuredBase_Op<"test1"
@ -86,9 +86,9 @@ structured_op: !LinalgStructuredOpConfig
# IMPL-LABEL: void Test1Op::regionBuilder(
# IMPL: ImplicitLocOpBuilder &b, Block &block)
# IMPL: Value [[VAL0:[a-z0-9]+]] = helper.constant("42 : i64");
# IMPL-DAG: Value [[VAL1:[a-z0-9]+]] = helper.cast(block.getArgument(0).getType(), [[VAL0]], false);
# IMPL-DAG: Value [[VAL1:[a-z0-9]+]] = helper.typefn__cast(block.getArgument(0).getType(), [[VAL0]]);
# IMPL-DAG: Value [[VAL2:[a-z0-9]+]] = helper.index(1);
# IMPL-DAG: Value [[VAL3:[a-z0-9]+]] = helper.cast(block.getArgument(0).getType(), [[VAL2]], true);
# IMPL-DAG: Value [[VAL3:[a-z0-9]+]] = helper.typefn__cast_unsigned(block.getArgument(0).getType(), [[VAL2]]);
# IMPL-DAG: Value [[VAL4:[a-z0-9]+]] = helper.applyfn__add([[VAL1]], [[VAL3]]);

View File

@ -23,7 +23,7 @@ def matmul(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
# CHECK: ---

View File

@ -15,11 +15,11 @@ from mlir.dialects.linalg.opdsl.lang import *
# CHECK: scalar_apply:
# CHECK: fn_name: mul
# CHECK: operands:
# CHECK: symbolic_cast:
# CHECK: type_fn:
# CHECK: type_var: U
# CHECK: operands:
# CHECK: scalar_arg: A
# CHECK: symbolic_cast:
# CHECK: type_fn:
# CHECK: type_var: U
# CHECK: operands:
# CHECK: scalar_arg: B
@ -28,7 +28,7 @@ def matmul(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
# CHECK: ---
@ -42,23 +42,23 @@ def matmul(
# CHECK: scalar_apply:
# CHECK: fn_name: add
# CHECK: operands:
# CHECK: symbolic_cast:
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '3.1415926535897931 : f64'
# CHECK: symbolic_cast:
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '42 : i64'
# CHECK: symbolic_cast:
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '1.{{[0]*}}e+03 : f64'
@linalg_structured_op
def constants(O=TensorDef(T, S.M, S.K, output=True)):
pi = cast(T, const(3.1415926535897931))
cst42 = cast(T, const(42))
cst1000 = cast(T, const(1e+3))
pi = TypeFn.cast(T, const(3.1415926535897931))
cst42 = TypeFn.cast(T, const(42))
cst1000 = TypeFn.cast(T, const(1e+3))
O[D.m, D.n] = pi + cst42 - cst1000

View File

@ -19,9 +19,9 @@ def conv_poly(
strides=IndexAttrDef(S.SH, S.SW),
dilations=IndexAttrDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] += cast(
O[D.n, D.oh, D.ow, D.c] += TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]) * cast(U, K[D.kh, D.kw, D.c])
D.c]) * TypeFn.cast(U, K[D.kh, D.kw, D.c])
with Context() as ctx, Location.unknown():

View File

@ -26,7 +26,7 @@ def matmul_poly(
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
domain(D.m, D.n, D.k)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
@linalg_structured_op
@ -35,7 +35,8 @@ def matmul_unsigned_poly(
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
domain(D.m, D.n, D.k)
C[D.m, D.n] += cast_unsigned(U, A[D.m, D.k]) * cast_unsigned(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast_unsigned(U, A[D.m, D.k]) * TypeFn.cast_unsigned(
U, B[D.k, D.n])
with Context() as ctx, Location.unknown():

View File

@ -14,27 +14,29 @@ from mlir.dialects.linalg.opdsl.lang import *
# - exponential functions
# - custom op names.
@linalg_structured_op
def fill_rng_poly(
min=ScalarDef(F64),
max=ScalarDef(F64),
seed=ScalarDef(I32),
O=TensorDef(T, S.M, S.N, output=True)):
multiplier = cast(I32, const(1103515245))
increment = cast(I32, const(12345))
rand1 = (cast(I32, index(D.m)) + seed) * multiplier + increment
rand2 = (cast(I32, index(D.n)) + rand1) * multiplier + increment
inv_range = cast(F64, const(2.3283064e-10))
offset = cast(F64, const(2147483647))
multiplier = TypeFn.cast(I32, const(1103515245))
increment = TypeFn.cast(I32, const(12345))
rand1 = (TypeFn.cast(I32, index(D.m)) + seed) * multiplier + increment
rand2 = (TypeFn.cast(I32, index(D.n)) + rand1) * multiplier + increment
inv_range = TypeFn.cast(F64, const(2.3283064e-10))
offset = TypeFn.cast(F64, const(2147483647))
scaling = (max - min) * inv_range
O[D.m, D.n] = cast(T, (offset + cast(F64, rand2)) * scaling + min)
O[D.m, D.n] = TypeFn.cast(T,
(offset + TypeFn.cast(F64, rand2)) * scaling + min)
@linalg_structured_op
def soft_plus_poly(
I=TensorDef(T, S.M, S.N), O=TensorDef(U, S.M, S.N, output=True)):
O[D.m, D.n] = \
PrimFn.log(cast(U, const(1.0)) + cast(U, PrimFn.exp(I[D.m, D.n])))
O[D.m, D.n] = PrimFn.log(
TypeFn.cast(U, const(1.0)) + TypeFn.cast(U, PrimFn.exp(I[D.m, D.n])))
@linalg_structured_op(op_name="custom_op_name")

View File

@ -20,8 +20,8 @@ def pooling_max_poly(
dilations=IndexAttrDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@linalg_structured_op
@ -33,7 +33,7 @@ def pooling_max_unsigned_poly(
dilations=IndexAttrDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max_unsigned(D.kh, D.kw)(
cast_unsigned(
TypeFn.cast_unsigned(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@ -46,8 +46,8 @@ def pooling_min_poly(
dilations=IndexAttrDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
TypeFn.cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))
@linalg_structured_op
@ -59,7 +59,7 @@ def pooling_min_unsigned_poly(
dilations=IndexAttrDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min_unsigned(D.kh, D.kw)(
cast_unsigned(
TypeFn.cast_unsigned(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c]))

View File

@ -13,4 +13,4 @@ def matmul(
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])

View File

@ -24,7 +24,7 @@ def matmul(
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
domain(D.m, D.n, D.k)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
# Verifies that assignment to a scalar (represented as [None]) is represented
@ -42,7 +42,7 @@ def matmul(
# CHECK-NEXT: - reduction
@linalg_structured_op
def dot(A=TensorDef(T, S.M), B=TensorDef(T, S.M), C=TensorDef(U, output=True)):
C[None] += cast(U, A[D.m]) * cast(U, B[D.m])
C[None] += TypeFn.cast(U, A[D.m]) * TypeFn.cast(U, B[D.m])
# Verifies that the index_dims of shape-only operands translate to correct
@ -65,4 +65,4 @@ def pool(
K=TensorDef(T, S.K, index_dims=[D.k]),
O=TensorDef(U, S.O, output=True)):
domain(D.o, D.k)
O[D.o] += cast(U, I[D.o * 2 + D.k])
O[D.o] += TypeFn.cast(U, I[D.o * 2 + D.k])

View File

@ -89,12 +89,12 @@ struct ScalarApply {
std::vector<ScalarExpression> operands;
};
struct ScalarSymbolicCast {
struct ScalarTypeFn {
std::string fnName;
std::string typeVar;
// NOTE: This must be of arity 1, but to break the self-referential cycle,
// we use a heap allocated vector.
std::vector<ScalarExpression> operands;
bool isUnsignedCast;
};
struct ScalarExpression {
@ -102,7 +102,7 @@ struct ScalarExpression {
Optional<std::string> constant;
Optional<int64_t> index;
Optional<ScalarApply> apply;
Optional<ScalarSymbolicCast> symbolicCast;
Optional<ScalarTypeFn> typeFn;
};
struct ScalarAssign {
@ -141,7 +141,8 @@ namespace yaml {
/// Top-level type containing op metadata and one of a concrete op type.
/// Currently, the only defined op type is `structured_op` (maps to
/// `LinalgStructuredOpConfig`).
template <> struct MappingTraits<LinalgOpConfig> {
template <>
struct MappingTraits<LinalgOpConfig> {
static void mapping(IO &io, LinalgOpConfig &info) {
io.mapOptional("metadata", info.metadata);
io.mapOptional("structured_op", info.structuredOp);
@ -154,7 +155,8 @@ template <> struct MappingTraits<LinalgOpConfig> {
/// - List of indexing maps (see `LinalgIndexingMaps`).
/// - Iterator types (see `LinalgIteratorTypeDef`).
/// - List of scalar level assignment (see `ScalarAssign`).
template <> struct MappingTraits<LinalgStructuredOpConfig> {
template <>
struct MappingTraits<LinalgStructuredOpConfig> {
static void mapping(IO &io, LinalgStructuredOpConfig &info) {
io.mapRequired("args", info.args);
io.mapRequired("indexing_maps", info.indexingMaps);
@ -177,7 +179,8 @@ template <> struct MappingTraits<LinalgStructuredOpConfig> {
/// attribute symbols. During op creation these symbols are replaced by the
/// corresponding `name` attribute values. Only attribute arguments have
/// an `attribute_map`.
template <> struct MappingTraits<LinalgOperandDef> {
template <>
struct MappingTraits<LinalgOperandDef> {
static void mapping(IO &io, LinalgOperandDef &info) {
io.mapRequired("name", info.name);
io.mapRequired("usage", info.usage);
@ -188,7 +191,8 @@ template <> struct MappingTraits<LinalgOperandDef> {
};
/// Usage enum for a named argument.
template <> struct ScalarEnumerationTraits<LinalgOperandDefUsage> {
template <>
struct ScalarEnumerationTraits<LinalgOperandDefUsage> {
static void enumeration(IO &io, LinalgOperandDefUsage &value) {
io.enumCase(value, "InputOperand", LinalgOperandDefUsage::input);
io.enumCase(value, "OutputOperand", LinalgOperandDefUsage::output);
@ -197,7 +201,8 @@ template <> struct ScalarEnumerationTraits<LinalgOperandDefUsage> {
};
/// Iterator type enum.
template <> struct ScalarEnumerationTraits<LinalgIteratorTypeDef> {
template <>
struct ScalarEnumerationTraits<LinalgIteratorTypeDef> {
static void enumeration(IO &io, LinalgIteratorTypeDef &value) {
io.enumCase(value, "parallel", LinalgIteratorTypeDef::parallel);
io.enumCase(value, "reduction", LinalgIteratorTypeDef::reduction);
@ -205,7 +210,8 @@ template <> struct ScalarEnumerationTraits<LinalgIteratorTypeDef> {
};
/// Metadata about the op (name, C++ name, and documentation).
template <> struct MappingTraits<LinalgOpMetadata> {
template <>
struct MappingTraits<LinalgOpMetadata> {
static void mapping(IO &io, LinalgOpMetadata &info) {
io.mapRequired("name", info.name);
io.mapRequired("cpp_class_name", info.cppClassName);
@ -219,7 +225,8 @@ template <> struct MappingTraits<LinalgOpMetadata> {
/// some symbols that bind to attributes of the op. Each indexing map must
/// be normalized over the same list of dimensions, and its symbols must
/// match the symbols for argument shapes.
template <> struct MappingTraits<LinalgIndexingMapsConfig> {
template <>
struct MappingTraits<LinalgIndexingMapsConfig> {
static void mapping(IO &io, LinalgIndexingMapsConfig &info) {
io.mapOptional("static_indexing_maps", info.staticIndexingMaps);
}
@ -229,7 +236,8 @@ template <> struct MappingTraits<LinalgIndexingMapsConfig> {
/// - The `arg` name must match a named output.
/// - The `value` is a scalar expression for computing the value to
/// assign (see `ScalarExpression`).
template <> struct MappingTraits<ScalarAssign> {
template <>
struct MappingTraits<ScalarAssign> {
static void mapping(IO &io, ScalarAssign &info) {
io.mapRequired("arg", info.arg);
io.mapRequired("value", info.value);
@ -240,14 +248,15 @@ template <> struct MappingTraits<ScalarAssign> {
/// - `scalar_arg`: Name of an argument to the op.
/// - `scalar_apply`: Result of evaluating a named function (see
/// `ScalarApply`).
/// - `symbolic_cast`: Cast to a symbolic TypeVar bound elsewhere.
template <> struct MappingTraits<ScalarExpression> {
/// - `type_fn`: A named type conversion function (see `ScalarTypeFn`).
template <>
struct MappingTraits<ScalarExpression> {
static void mapping(IO &io, ScalarExpression &info) {
io.mapOptional("scalar_arg", info.arg);
io.mapOptional("scalar_const", info.constant);
io.mapOptional("scalar_index", info.index);
io.mapOptional("scalar_apply", info.apply);
io.mapOptional("symbolic_cast", info.symbolicCast);
io.mapOptional("type_fn", info.typeFn);
}
};
@ -256,24 +265,27 @@ template <> struct MappingTraits<ScalarExpression> {
/// functions include:
/// - `add(lhs, rhs)`
/// - `mul(lhs, rhs)`
template <> struct MappingTraits<ScalarApply> {
template <>
struct MappingTraits<ScalarApply> {
static void mapping(IO &io, ScalarApply &info) {
io.mapRequired("fn_name", info.fnName);
io.mapRequired("operands", info.operands);
}
};
template <> struct MappingTraits<ScalarSymbolicCast> {
static void mapping(IO &io, ScalarSymbolicCast &info) {
template <>
struct MappingTraits<ScalarTypeFn> {
static void mapping(IO &io, ScalarTypeFn &info) {
io.mapRequired("fn_name", info.fnName);
io.mapRequired("type_var", info.typeVar);
io.mapRequired("operands", info.operands);
io.mapRequired("is_unsigned_cast", info.isUnsignedCast);
}
};
/// Helper mapping which accesses an AffineMapAttr as a serialized string of
/// the same.
template <> struct ScalarTraits<SerializedAffineMap> {
template <>
struct ScalarTraits<SerializedAffineMap> {
static void output(const SerializedAffineMap &value, void *rawYamlContext,
raw_ostream &out) {
assert(value.affineMapAttr);
@ -949,33 +961,33 @@ void {0}::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {{
interleaveToString(operandCppValues, ", ")));
return cppIdent;
}
if (expression.symbolicCast) {
if (expression.typeFn) {
// Symbolic cast.
// Operands must be arity 1.
if (expression.symbolicCast->operands.size() != 1) {
if (expression.typeFn->operands.size() != 1) {
emitError(genContext.getLoc())
<< "symbolic_cast operand arity must be 1";
<< "type conversion operand arity must be 1";
return None;
}
Optional<std::string> operandCppValue =
generateExpression(expression.symbolicCast->operands[0]);
generateExpression(expression.typeFn->operands[0]);
if (!operandCppValue)
return None;
Optional<std::string> typeCppValue =
findTypeValue(expression.symbolicCast->typeVar, args);
findTypeValue(expression.typeFn->typeVar, args);
if (!typeCppValue) {
emitError(genContext.getLoc())
<< "type variable " << expression.symbolicCast->typeVar
<< ", used in a symbolic cast must map to a predefined or "
<< "type variable " << expression.typeFn->typeVar
<< ", used in a type conversion, must map to a predefined or "
<< "an argument type but it does not";
return None;
}
std::string cppIdent = llvm::formatv("value{0}", ++localCounter);
stmts.push_back(
llvm::formatv("Value {0} = helper.cast({1}, {2}, {3});", cppIdent,
typeCppValue.getValue(), *operandCppValue,
expression.symbolicCast->isUnsignedCast));
llvm::formatv("Value {0} = helper.typefn__{1}({2}, {3});",
cppIdent, expression.typeFn->fnName,
typeCppValue.getValue(), *operandCppValue));
return cppIdent;
}
emitError(genContext.getLoc()) << "unknown ScalarExpression type";