forked from OSchip/llvm-project
StackColoring: smarter check for slot overlap
Summary: The old check for slot overlap treated 2 slots `S` and `T` as overlapping if there existed a CFG node in which both of the slots could possibly be active. That is overly conservative and caused stack blowups in Rust programs. Instead, check whether there is a single CFG node in which both of the slots are possibly active *together*. Fixes PR32488. Patch by Ariel Ben-Yehuda <ariel.byd@gmail.com> Reviewers: thanm, nagisa, llvm-commits, efriedma, rnk Reviewed By: thanm Subscribers: dotdash Differential Revision: https://reviews.llvm.org/D31583 llvm-svn: 305193
This commit is contained in:
parent
d4765a38b4
commit
14d61436c0
|
@ -86,10 +86,134 @@ STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
|
|||
STATISTIC(StackSlotMerged, "Number of stack slot merged.");
|
||||
STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// StackColoring Pass
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Stack Coloring reduces stack usage by merging stack slots when they
|
||||
// can't be used together. For example, consider the following C program:
|
||||
//
|
||||
// void bar(char *, int);
|
||||
// void foo(bool var) {
|
||||
// A: {
|
||||
// char z[4096];
|
||||
// bar(z, 0);
|
||||
// }
|
||||
//
|
||||
// char *p;
|
||||
// char x[4096];
|
||||
// char y[4096];
|
||||
// if (var) {
|
||||
// p = x;
|
||||
// } else {
|
||||
// bar(y, 1);
|
||||
// p = y + 1024;
|
||||
// }
|
||||
// B:
|
||||
// bar(p, 2);
|
||||
// }
|
||||
//
|
||||
// Naively-compiled, this program would use 12k of stack space. However, the
|
||||
// stack slot corresponding to `z` is always destroyed before either of the
|
||||
// stack slots for `x` or `y` are used, and then `x` is only used if `var`
|
||||
// is true, while `y` is only used if `var` is false. So in no time are 2
|
||||
// of the stack slots used together, and therefore we can merge them,
|
||||
// compiling the function using only a single 4k alloca:
|
||||
//
|
||||
// void foo(bool var) { // equivalent
|
||||
// char x[4096];
|
||||
// char *p;
|
||||
// bar(x, 0);
|
||||
// if (var) {
|
||||
// p = x;
|
||||
// } else {
|
||||
// bar(x, 1);
|
||||
// p = x + 1024;
|
||||
// }
|
||||
// bar(p, 2);
|
||||
// }
|
||||
//
|
||||
// This is an important optimization if we want stack space to be under
|
||||
// control in large functions, both open-coded ones and ones created by
|
||||
// inlining.
|
||||
//
|
||||
// Implementation Notes:
|
||||
// ---------------------
|
||||
//
|
||||
// An important part of the above reasoning is that `z` can't be accessed
|
||||
// while the latter 2 calls to `bar` are running. This is justified because
|
||||
// `z`'s lifetime is over after we exit from block `A:`, so any further
|
||||
// accesses to it would be UB. The way we represent this information
|
||||
// in LLVM is by having frontends delimit blocks with `lifetime.start`
|
||||
// and `lifetime.end` intrinsics.
|
||||
//
|
||||
// The effect of these intrinsics seems to be as follows (maybe I should
|
||||
// specify this in the reference?):
|
||||
//
|
||||
// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
|
||||
// lifetime intrinsic refers to that stack slot, in which case
|
||||
// it is marked as *in-scope*.
|
||||
// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
|
||||
// the stack slot is overwritten with `undef`.
|
||||
// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
|
||||
// L4) on function exit, all stack slots are marked as *out-of-scope*.
|
||||
// L5) `lifetime.end` is a no-op when called on a slot that is already
|
||||
// *out-of-scope*.
|
||||
// L6) memory accesses to *out-of-scope* stack slots are UB.
|
||||
// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
|
||||
// are invalidated, unless the slot is "degenerate". This is used to
|
||||
// justify not marking slots as in-use until the pointer to them is
|
||||
// used, but feels a bit hacky in the presence of things like LICM. See
|
||||
// the "Degenerate Slots" section for more details.
|
||||
//
|
||||
// Now, let's ground stack coloring on these rules. We'll define a slot
|
||||
// as *in-use* at a (dynamic) point in execution if it either can be
|
||||
// written to at that point, or if it has a live and non-undef content
|
||||
// at that point.
|
||||
//
|
||||
// Obviously, slots that are never *in-use* together can be merged, and
|
||||
// in our example `foo`, the slots for `x`, `y` and `z` are never
|
||||
// in-use together (of course, sometimes slots that *are* in-use together
|
||||
// might still be mergable, but we don't care about that here).
|
||||
//
|
||||
// In this implementation, we successively merge pairs of slots that are
|
||||
// not *in-use* together. We could be smarter - for example, we could merge
|
||||
// a single large slot with 2 small slots, or we could construct the
|
||||
// interference graph and run a "smart" graph coloring algorithm, but with
|
||||
// that aside, how do we find out whether a pair of slots might be *in-use*
|
||||
// together?
|
||||
//
|
||||
// From our rules, we see that *out-of-scope* slots are never *in-use*,
|
||||
// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
|
||||
// until their address is taken. Therefore, we can approximate slot activity
|
||||
// using dataflow.
|
||||
//
|
||||
// A subtle point: naively, we might try to figure out which pairs of
|
||||
// stack-slots interfere by propagating `S in-use` through the CFG for every
|
||||
// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
|
||||
// which they are both *in-use*.
|
||||
//
|
||||
// That is sound, but overly conservative in some cases: in our (artificial)
|
||||
// example `foo`, either `x` or `y` might be in use at the label `B:`, but
|
||||
// as `x` is only in use if we came in from the `var` edge and `y` only
|
||||
// if we came from the `!var` edge, they still can't be in use together.
|
||||
// See PR32488 for an important real-life case.
|
||||
//
|
||||
// If we wanted to find all points of interference precisely, we could
|
||||
// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
|
||||
// would be precise, but requires propagating `O(n^2)` dataflow facts.
|
||||
//
|
||||
// However, we aren't interested in the *set* of points of interference
|
||||
// between 2 stack slots, only *whether* there *is* such a point. So we
|
||||
// can rely on a little trick: for `S` and `T` to be in-use together,
|
||||
// one of them needs to become in-use while the other is in-use (or
|
||||
// they might both become in use simultaneously). We can check this
|
||||
// by also keeping track of the points at which a stack slot might *start*
|
||||
// being in-use.
|
||||
//
|
||||
// Exact first use:
|
||||
// ----------------
|
||||
//
|
||||
// Consider the following motivating example:
|
||||
//
|
||||
// int foo() {
|
||||
|
@ -158,6 +282,9 @@ STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
|
|||
// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
|
||||
// byte stack (better).
|
||||
//
|
||||
// Degenerate Slots:
|
||||
// -----------------
|
||||
//
|
||||
// Relying entirely on first-use of stack slots is problematic,
|
||||
// however, due to the fact that optimizations can sometimes migrate
|
||||
// uses of a variable outside of its lifetime start/end region. Here
|
||||
|
@ -237,10 +364,6 @@ STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
|
|||
// for "b" then it will appear that 'b' has a degenerate lifetime.
|
||||
//
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// StackColoring Pass
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
/// StackColoring - A machine pass for merging disjoint stack allocations,
|
||||
/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
|
||||
|
@ -271,8 +394,11 @@ class StackColoring : public MachineFunctionPass {
|
|||
/// Maps basic blocks to a serial number.
|
||||
SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
|
||||
|
||||
/// Maps liveness intervals for each slot.
|
||||
/// Maps slots to their use interval. Outside of this interval, slots
|
||||
/// values are either dead or `undef` and they will not be written to.
|
||||
SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
|
||||
/// Maps slots to the points where they can become in-use.
|
||||
SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
|
||||
/// VNInfo is used for the construction of LiveIntervals.
|
||||
VNInfo::Allocator VNInfoAllocator;
|
||||
/// SlotIndex analysis object.
|
||||
|
@ -672,15 +798,22 @@ void StackColoring::calculateLocalLiveness()
|
|||
|
||||
void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
|
||||
SmallVector<SlotIndex, 16> Starts;
|
||||
SmallVector<SlotIndex, 16> Finishes;
|
||||
SmallVector<bool, 16> DefinitelyInUse;
|
||||
|
||||
// For each block, find which slots are active within this block
|
||||
// and update the live intervals.
|
||||
for (const MachineBasicBlock &MBB : *MF) {
|
||||
Starts.clear();
|
||||
Starts.resize(NumSlots);
|
||||
Finishes.clear();
|
||||
Finishes.resize(NumSlots);
|
||||
DefinitelyInUse.clear();
|
||||
DefinitelyInUse.resize(NumSlots);
|
||||
|
||||
// Start the interval of the slots that we previously found to be 'in-use'.
|
||||
BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
|
||||
for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
|
||||
pos = MBBLiveness.LiveIn.find_next(pos)) {
|
||||
Starts[pos] = Indexes->getMBBStartIdx(&MBB);
|
||||
}
|
||||
|
||||
// Create the interval for the basic blocks containing lifetime begin/end.
|
||||
for (const MachineInstr &MI : MBB) {
|
||||
|
@ -692,66 +825,35 @@ void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
|
|||
SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
|
||||
for (auto Slot : slots) {
|
||||
if (IsStart) {
|
||||
if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
|
||||
// If a slot is already definitely in use, we don't have to emit
|
||||
// a new start marker because there is already a pre-existing
|
||||
// one.
|
||||
if (!DefinitelyInUse[Slot]) {
|
||||
LiveStarts[Slot].push_back(ThisIndex);
|
||||
DefinitelyInUse[Slot] = true;
|
||||
}
|
||||
if (!Starts[Slot].isValid())
|
||||
Starts[Slot] = ThisIndex;
|
||||
} else {
|
||||
if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
|
||||
Finishes[Slot] = ThisIndex;
|
||||
if (Starts[Slot].isValid()) {
|
||||
VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
|
||||
Intervals[Slot]->addSegment(
|
||||
LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
|
||||
Starts[Slot] = SlotIndex(); // Invalidate the start index
|
||||
DefinitelyInUse[Slot] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create the interval of the blocks that we previously found to be 'alive'.
|
||||
BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
|
||||
for (unsigned pos : MBBLiveness.LiveIn.set_bits()) {
|
||||
Starts[pos] = Indexes->getMBBStartIdx(&MBB);
|
||||
}
|
||||
for (unsigned pos : MBBLiveness.LiveOut.set_bits()) {
|
||||
Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
|
||||
}
|
||||
|
||||
// Finish up started segments
|
||||
for (unsigned i = 0; i < NumSlots; ++i) {
|
||||
//
|
||||
// When LifetimeStartOnFirstUse is turned on, data flow analysis
|
||||
// is forward (from starts to ends), not bidirectional. A
|
||||
// consequence of this is that we can wind up in situations
|
||||
// where Starts[i] is invalid but Finishes[i] is valid and vice
|
||||
// versa. Example:
|
||||
//
|
||||
// LIFETIME_START x
|
||||
// if (...) {
|
||||
// <use of x>
|
||||
// throw ...;
|
||||
// }
|
||||
// LIFETIME_END x
|
||||
// return 2;
|
||||
//
|
||||
//
|
||||
// Here the slot for "x" will not be live into the block
|
||||
// containing the "return 2" (since lifetimes start with first
|
||||
// use, not at the dominating LIFETIME_START marker).
|
||||
//
|
||||
if (Starts[i].isValid() && !Finishes[i].isValid()) {
|
||||
Finishes[i] = Indexes->getMBBEndIdx(&MBB);
|
||||
}
|
||||
if (!Starts[i].isValid())
|
||||
continue;
|
||||
|
||||
assert(Starts[i] && Finishes[i] && "Invalid interval");
|
||||
VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
|
||||
SlotIndex S = Starts[i];
|
||||
SlotIndex F = Finishes[i];
|
||||
if (S < F) {
|
||||
// We have a single consecutive region.
|
||||
Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
|
||||
} else {
|
||||
// We have two non-consecutive regions. This happens when
|
||||
// LIFETIME_START appears after the LIFETIME_END marker.
|
||||
SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
|
||||
SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
|
||||
Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
|
||||
Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
|
||||
}
|
||||
SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
|
||||
VNInfo *VNI = Intervals[i]->getValNumInfo(0);
|
||||
Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -981,6 +1083,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
|
|||
BasicBlockNumbering.clear();
|
||||
Markers.clear();
|
||||
Intervals.clear();
|
||||
LiveStarts.clear();
|
||||
VNInfoAllocator.Reset();
|
||||
|
||||
unsigned NumSlots = MFI->getObjectIndexEnd();
|
||||
|
@ -992,6 +1095,7 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
|
|||
SmallVector<int, 8> SortedSlots;
|
||||
SortedSlots.reserve(NumSlots);
|
||||
Intervals.reserve(NumSlots);
|
||||
LiveStarts.resize(NumSlots);
|
||||
|
||||
unsigned NumMarkers = collectMarkers(NumSlots);
|
||||
|
||||
|
@ -1063,6 +1167,9 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
|
|||
return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
|
||||
});
|
||||
|
||||
for (auto &s : LiveStarts)
|
||||
std::sort(s.begin(), s.end());
|
||||
|
||||
bool Changed = true;
|
||||
while (Changed) {
|
||||
Changed = false;
|
||||
|
@ -1078,12 +1185,22 @@ bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
|
|||
int SecondSlot = SortedSlots[J];
|
||||
LiveInterval *First = &*Intervals[FirstSlot];
|
||||
LiveInterval *Second = &*Intervals[SecondSlot];
|
||||
auto &FirstS = LiveStarts[FirstSlot];
|
||||
auto &SecondS = LiveStarts[SecondSlot];
|
||||
assert (!First->empty() && !Second->empty() && "Found an empty range");
|
||||
|
||||
// Merge disjoint slots.
|
||||
if (!First->overlaps(*Second)) {
|
||||
// Merge disjoint slots. This is a little bit tricky - see the
|
||||
// Implementation Notes section for an explanation.
|
||||
if (!First->isLiveAtIndexes(SecondS) &&
|
||||
!Second->isLiveAtIndexes(FirstS)) {
|
||||
Changed = true;
|
||||
First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
|
||||
|
||||
int OldSize = FirstS.size();
|
||||
FirstS.append(SecondS.begin(), SecondS.end());
|
||||
auto Mid = FirstS.begin() + OldSize;
|
||||
std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
|
||||
|
||||
SlotRemap[SecondSlot] = FirstSlot;
|
||||
SortedSlots[J] = -1;
|
||||
DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
|
||||
|
|
|
@ -582,12 +582,76 @@ if.end: ; preds = %if.then, %entry
|
|||
ret i32 %x.addr.0
|
||||
}
|
||||
|
||||
;CHECK-LABEL: multi_segment:
|
||||
;YESCOLOR: subq $256, %rsp
|
||||
;NOFIRSTUSE: subq $256, %rsp
|
||||
;NOCOLOR: subq $512, %rsp
|
||||
define i1 @multi_segment(i1, i1)
|
||||
{
|
||||
entry-block:
|
||||
%foo = alloca [32 x i64]
|
||||
%bar = alloca [32 x i64]
|
||||
%foo_i8 = bitcast [32 x i64]* %foo to i8*
|
||||
%bar_i8 = bitcast [32 x i64]* %bar to i8*
|
||||
call void @llvm.lifetime.start.p0i8(i64 256, i8* %bar_i8)
|
||||
call void @baz([32 x i64]* %bar, i32 1)
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %bar_i8)
|
||||
call void @llvm.lifetime.start.p0i8(i64 256, i8* %foo_i8)
|
||||
call void @baz([32 x i64]* %foo, i32 1)
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %foo_i8)
|
||||
call void @llvm.lifetime.start.p0i8(i64 256, i8* %bar_i8)
|
||||
call void @baz([32 x i64]* %bar, i32 1)
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %bar_i8)
|
||||
ret i1 true
|
||||
}
|
||||
|
||||
;CHECK-LABEL: pr32488:
|
||||
;YESCOLOR: subq $256, %rsp
|
||||
;NOFIRSTUSE: subq $256, %rsp
|
||||
;NOCOLOR: subq $512, %rsp
|
||||
define i1 @pr32488(i1, i1)
|
||||
{
|
||||
entry-block:
|
||||
%foo = alloca [32 x i64]
|
||||
%bar = alloca [32 x i64]
|
||||
%foo_i8 = bitcast [32 x i64]* %foo to i8*
|
||||
%bar_i8 = bitcast [32 x i64]* %bar to i8*
|
||||
br i1 %0, label %if_false, label %if_true
|
||||
if_false:
|
||||
call void @llvm.lifetime.start.p0i8(i64 256, i8* %bar_i8)
|
||||
call void @baz([32 x i64]* %bar, i32 0)
|
||||
br i1 %1, label %if_false.1, label %onerr
|
||||
if_false.1:
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %bar_i8)
|
||||
br label %merge
|
||||
if_true:
|
||||
call void @llvm.lifetime.start.p0i8(i64 256, i8* %foo_i8)
|
||||
call void @baz([32 x i64]* %foo, i32 1)
|
||||
br i1 %1, label %if_true.1, label %onerr
|
||||
if_true.1:
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %foo_i8)
|
||||
br label %merge
|
||||
merge:
|
||||
ret i1 false
|
||||
onerr:
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %foo_i8)
|
||||
call void @llvm.lifetime.end.p0i8(i64 256, i8* %bar_i8)
|
||||
call void @destructor()
|
||||
ret i1 true
|
||||
}
|
||||
|
||||
%Data = type { [32 x i64] }
|
||||
|
||||
declare void @destructor()
|
||||
|
||||
declare void @inita(i32*)
|
||||
|
||||
declare void @initb(i32*,i32*,i32*)
|
||||
|
||||
declare void @bar([100 x i32]* , [100 x i32]*) nounwind
|
||||
|
||||
declare void @baz([32 x i64]*, i32)
|
||||
|
||||
declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture) nounwind
|
||||
|
||||
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture) nounwind
|
||||
|
|
Loading…
Reference in New Issue