Added a new IRCanonicalizer pass.

Summary:
Added a new IRCanonicalizer pass which aims to transform LLVM modules into
a canonical form by reordering and renaming instructions while preserving the
same semantics. The canonicalizer makes it easier to spot semantic differences
when diffing two modules which have undergone different passes.

Presentation: https://www.youtube.com/watch?v=c9WMijSOEUg

Reviewed by: plotfi

Differential Revision: https://reviews.llvm.org/D66029
This commit is contained in:
Michal Paszkowski 2020-05-23 02:48:55 +02:00
parent 0591329dd1
commit 14d358537f
13 changed files with 722 additions and 1 deletions

View File

@ -691,6 +691,14 @@ the mess.
An interprocedural variant of :ref:`Sparse Conditional Constant Propagation
<passes-sccp>`.
``-ir-canonicalizer``: Transforms IR into canonical form
--------------------------------------------------------
This pass aims to transform LLVM Modules into a canonical form by reordering and
renaming instructions while preserving the same semantics. The canonicalizer makes
it easier to spot semantic differences while diffing two modules which have undergone
two different passes.
``-jump-threading``: Jump Threading
-----------------------------------

View File

@ -41,7 +41,10 @@ Non-comprehensive list of changes in this release
for adding a new subsection.
* ...
* Added a new IRCanonicalizer pass which aims to transform LLVM modules into
a canonical form by reordering and renaming instructions while preserving the
same semantics. The canonicalizer makes it easier to spot semantic differences
when diffing two modules which have undergone different passes.
.. NOTE
If you would like to document a larger change, then you can add a

View File

@ -179,6 +179,7 @@ void initializeHotColdSplittingLegacyPassPass(PassRegistry&);
void initializeHWAddressSanitizerLegacyPassPass(PassRegistry &);
void initializeIPCPPass(PassRegistry&);
void initializeIPSCCPLegacyPassPass(PassRegistry&);
void initializeIRCanonicalizerPass(PassRegistry&);
void initializeIRCELegacyPassPass(PassRegistry&);
void initializeIRTranslatorPass(PassRegistry&);
void initializeIVUsersWrapperPassPass(PassRegistry&);

View File

@ -118,6 +118,7 @@ namespace {
(void) llvm::createLoopGuardWideningPass();
(void) llvm::createIPConstantPropagationPass();
(void) llvm::createIPSCCPPass();
(void) llvm::createIRCanonicalizerPass();
(void) llvm::createInductiveRangeCheckEliminationPass();
(void) llvm::createIndVarSimplifyPass();
(void) llvm::createInstSimplifyLegacyPass();

View File

@ -46,6 +46,12 @@ extern char &LowerInvokePassID;
FunctionPass *createInstructionNamerPass();
extern char &InstructionNamerID;
//===----------------------------------------------------------------------===//
//
// IRCanonicalizer - Transforms LLVM Modules into canonical form.
//
Pass *createIRCanonicalizerPass();
//===----------------------------------------------------------------------===//
//
// LowerSwitch - This pass converts SwitchInst instructions into a sequence of

View File

@ -32,6 +32,7 @@ add_llvm_component_library(LLVMTransformUtils
InjectTLIMappings.cpp
InstructionNamer.cpp
IntegerDivision.cpp
IRCanonicalizer.cpp
LCSSA.cpp
LibCallsShrinkWrap.cpp
Local.cpp

View File

@ -0,0 +1,635 @@
//===--------------- IRCanonicalizer.cpp - IR Canonicalizer ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRCanonicalizer class which aims to transform LLVM
/// Modules into a canonical form by reordering and renaming instructions while
/// preserving the same semantics. The canonicalizer makes it easier to spot
/// semantic differences while diffing two modules which have undergone
/// different passes.
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#include <vector>
#define DEBUG_TYPE "ir-canonicalizer"
using namespace llvm;
namespace {
/// IRCanonicalizer aims to transform LLVM IR into canonical form.
class IRCanonicalizer : public FunctionPass {
public:
static char ID;
/// \name Canonicalizer flags.
/// @{
/// Preserves original order of instructions.
static cl::opt<bool> PreserveOrder;
/// Renames all instructions (including user-named).
static cl::opt<bool> RenameAll;
/// Folds all regular instructions (including pre-outputs).
static cl::opt<bool> FoldPreoutputs;
/// Sorts and reorders operands in commutative instructions.
static cl::opt<bool> ReorderOperands;
/// @}
/// Constructor for the IRCanonicalizer.
IRCanonicalizer() : FunctionPass(ID) {
initializeIRCanonicalizerPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
// Random constant for hashing, so the state isn't zero.
const uint64_t MagicHashConstant = 0x6acaa36bef8325c5ULL;
/// \name Naming.
/// @{
void nameFunctionArguments(Function &F);
void nameBasicBlocks(Function &F);
void nameInstruction(Instruction *I);
void nameAsInitialInstruction(Instruction *I);
void nameAsRegularInstruction(Instruction *I);
void foldInstructionName(Instruction *I);
/// @}
/// \name Reordering.
/// @{
void reorderInstructions(SmallVector<Instruction *, 16> &Outputs);
void reorderInstruction(Instruction *Used, Instruction *User,
SmallPtrSet<const Instruction *, 32> &Visited);
void reorderInstructionOperandsByNames(Instruction *I);
void reorderPHIIncomingValues(PHINode *PN);
/// @}
/// \name Utility methods.
/// @{
SmallVector<Instruction *, 16> collectOutputInstructions(Function &F);
bool isOutput(const Instruction *I);
bool isInitialInstruction(const Instruction *I);
bool hasOnlyImmediateOperands(const Instruction *I);
SetVector<int>
getOutputFootprint(Instruction *I,
SmallPtrSet<const Instruction *, 32> &Visited);
/// @}
};
} // namespace
char IRCanonicalizer::ID = 0;
cl::opt<bool> IRCanonicalizer::PreserveOrder(
"preserve-order", cl::Hidden,
cl::desc("Preserves original instruction order"));
cl::opt<bool> IRCanonicalizer::RenameAll(
"rename-all", cl::Hidden,
cl::desc("Renames all instructions (including user-named)"));
cl::opt<bool> IRCanonicalizer::FoldPreoutputs(
"fold-all", cl::Hidden,
cl::desc("Folds all regular instructions (including pre-outputs)"));
cl::opt<bool> IRCanonicalizer::ReorderOperands(
"reorder-operands", cl::Hidden,
cl::desc("Sorts and reorders operands in commutative instructions"));
INITIALIZE_PASS(IRCanonicalizer, "ir-canonicalizer",
"Transforms IR into canonical form", false, false)
Pass *llvm::createIRCanonicalizerPass() { return new IRCanonicalizer(); }
/// Entry method to the IRCanonicalizer.
///
/// \param M Module to canonicalize.
bool IRCanonicalizer::runOnFunction(Function &F) {
nameFunctionArguments(F);
nameBasicBlocks(F);
SmallVector<Instruction *, 16> Outputs = collectOutputInstructions(F);
if (!PreserveOrder)
reorderInstructions(Outputs);
for (auto &I : Outputs)
nameInstruction(I);
for (auto &I : instructions(F)) {
if (!PreserveOrder) {
if (ReorderOperands && I.isCommutative())
reorderInstructionOperandsByNames(&I);
if (auto *PN = dyn_cast<PHINode>(&I))
reorderPHIIncomingValues(PN);
}
foldInstructionName(&I);
}
return true;
}
/// Numbers arguments.
///
/// \param F Function whose arguments will be renamed.
void IRCanonicalizer::nameFunctionArguments(Function &F) {
int ArgumentCounter = 0;
for (auto &A : F.args()) {
if (RenameAll || A.getName().empty()) {
A.setName("a" + Twine(ArgumentCounter));
++ArgumentCounter;
}
}
}
/// Names basic blocks using a generated hash for each basic block in
/// a function considering the opcode and the order of output instructions.
///
/// \param F Function containing basic blocks to rename.
void IRCanonicalizer::nameBasicBlocks(Function &F) {
for (auto &B : F) {
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Hash considering output instruction opcodes.
for (auto &I : B)
if (isOutput(&I))
Hash = hashing::detail::hash_16_bytes(Hash, I.getOpcode());
if (RenameAll || B.getName().empty()) {
// Name basic block. Substring hash to make diffs more readable.
B.setName("bb" + std::to_string(Hash).substr(0, 5));
}
}
}
/// Names instructions graphically (recursive) in accordance with the
/// def-use tree, starting from the initial instructions (defs), finishing at
/// the output (top-most user) instructions (depth-first).
///
/// \param I Instruction to be renamed.
void IRCanonicalizer::nameInstruction(Instruction *I) {
// Determine the type of instruction to name.
if (isInitialInstruction(I)) {
// This is an initial instruction.
nameAsInitialInstruction(I);
} else {
// This must be a regular instruction.
nameAsRegularInstruction(I);
}
}
/// Names instruction following the scheme:
/// vl00000Callee(Operands)
///
/// Where 00000 is a hash calculated considering instruction's opcode and output
/// footprint. Callee's name is only included when instruction's type is
/// CallInst. In cases where instruction is commutative, operands list is also
/// sorted.
///
/// Renames instruction only when RenameAll flag is raised or instruction is
/// unnamed.
///
/// \see getOutputFootprint()
/// \param I Instruction to be renamed.
void IRCanonicalizer::nameAsInitialInstruction(Instruction *I) {
if (I->getType()->isVoidTy() || (!I->getName().empty() && !RenameAll))
return;
// Instruction operands for further sorting.
SmallVector<SmallString<64>, 4> Operands;
// Collect operands.
for (auto &OP : I->operands()) {
if (!isa<Function>(OP)) {
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
OP->printAsOperand(Stream, false);
Operands.push_back(StringRef(Stream.str()));
}
}
if (I->isCommutative())
llvm::sort(Operands);
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Consider instruction's opcode in the hash.
Hash = hashing::detail::hash_16_bytes(Hash, I->getOpcode());
SmallPtrSet<const Instruction *, 32> Visited;
// Get output footprint for I.
SetVector<int> OutputFootprint = getOutputFootprint(I, Visited);
// Consider output footprint in the hash.
for (const int &Output : OutputFootprint)
Hash = hashing::detail::hash_16_bytes(Hash, Output);
// Base instruction name.
SmallString<256> Name;
Name.append("vl" + std::to_string(Hash).substr(0, 5));
// In case of CallInst, consider callee in the instruction name.
if (const auto *CI = dyn_cast<CallInst>(I)) {
Function *F = CI->getCalledFunction();
if (F != nullptr) {
Name.append(F->getName());
}
}
Name.append("(");
for (unsigned long i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
I->setName(Name);
}
/// Names instruction following the scheme:
/// op00000Callee(Operands)
///
/// Where 00000 is a hash calculated considering instruction's opcode, its
/// operands' opcodes and order. Callee's name is only included when
/// instruction's type is CallInst. In cases where instruction is commutative,
/// operand list is also sorted.
///
/// Names instructions recursively in accordance with the def-use tree,
/// starting from the initial instructions (defs), finishing at
/// the output (top-most user) instructions (depth-first).
///
/// Renames instruction only when RenameAll flag is raised or instruction is
/// unnamed.
///
/// \see getOutputFootprint()
/// \param I Instruction to be renamed.
void IRCanonicalizer::nameAsRegularInstruction(Instruction *I) {
// Instruction operands for further sorting.
SmallVector<SmallString<128>, 4> Operands;
// The name of a regular instruction depends
// on the names of its operands. Hence, all
// operands must be named first in the use-def
// walk.
// Collect operands.
for (auto &OP : I->operands()) {
if (auto *IOP = dyn_cast<Instruction>(OP)) {
// Walk down the use-def chain.
nameInstruction(IOP);
Operands.push_back(IOP->getName());
} else if (isa<Value>(OP) && !isa<Function>(OP)) {
// This must be an immediate value.
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
OP->printAsOperand(Stream, false);
Operands.push_back(StringRef(Stream.str()));
}
}
if (I->isCommutative())
llvm::sort(Operands.begin(), Operands.end());
// Initialize to a magic constant, so the state isn't zero.
uint64_t Hash = MagicHashConstant;
// Consider instruction opcode in the hash.
Hash = hashing::detail::hash_16_bytes(Hash, I->getOpcode());
// Operand opcodes for further sorting (commutative).
SmallVector<int, 4> OperandsOpcodes;
// Collect operand opcodes for hashing.
for (auto &OP : I->operands())
if (auto *IOP = dyn_cast<Instruction>(OP))
OperandsOpcodes.push_back(IOP->getOpcode());
if (I->isCommutative())
llvm::sort(OperandsOpcodes.begin(), OperandsOpcodes.end());
// Consider operand opcodes in the hash.
for (const int Code : OperandsOpcodes)
Hash = hashing::detail::hash_16_bytes(Hash, Code);
// Base instruction name.
SmallString<512> Name;
Name.append("op" + std::to_string(Hash).substr(0, 5));
// In case of CallInst, consider callee in the instruction name.
if (const auto *CI = dyn_cast<CallInst>(I))
if (const Function *F = CI->getCalledFunction())
Name.append(F->getName());
Name.append("(");
for (unsigned long i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
if ((I->getName().empty() || RenameAll) && !I->getType()->isVoidTy())
I->setName(Name);
}
/// Shortens instruction's name. This method removes called function name from
/// the instruction name and substitutes the call chain with a corresponding
/// list of operands.
///
/// Examples:
/// op00000Callee(op00001Callee(...), vl00000Callee(1, 2), ...) ->
/// op00000(op00001, vl00000, ...) vl00000Callee(1, 2) -> vl00000(1, 2)
///
/// This method omits output instructions and pre-output (instructions directly
/// used by an output instruction) instructions (by default). By default it also
/// does not affect user named instructions.
///
/// \param I Instruction whose name will be folded.
void IRCanonicalizer::foldInstructionName(Instruction *I) {
// If this flag is raised, fold all regular
// instructions (including pre-outputs).
if (!FoldPreoutputs) {
// Don't fold if one of the users is an output instruction.
for (auto *U : I->users())
if (auto *IU = dyn_cast<Instruction>(U))
if (isOutput(IU))
return;
}
// Don't fold if it is an output instruction or has no op prefix.
if (isOutput(I) || I->getName().substr(0, 2) != "op")
return;
// Instruction operands.
SmallVector<SmallString<64>, 4> Operands;
for (auto &OP : I->operands()) {
if (const Instruction *IOP = dyn_cast<Instruction>(OP)) {
bool HasCanonicalName = I->getName().substr(0, 2) == "op" ||
I->getName().substr(0, 2) == "vl";
Operands.push_back(HasCanonicalName ? IOP->getName().substr(0, 7)
: IOP->getName());
}
}
if (I->isCommutative())
llvm::sort(Operands.begin(), Operands.end());
SmallString<256> Name;
Name.append(I->getName().substr(0, 7));
Name.append("(");
for (unsigned long i = 0; i < Operands.size(); ++i) {
Name.append(Operands[i]);
if (i < Operands.size() - 1)
Name.append(", ");
}
Name.append(")");
I->setName(Name);
}
/// Reorders instructions by walking up the tree from each operand of an output
/// instruction and reducing the def-use distance.
/// This method assumes that output instructions were collected top-down,
/// otherwise the def-use chain may be broken.
/// This method is a wrapper for recursive reorderInstruction().
///
/// \see reorderInstruction()
/// \param Outputs Vector of pointers to output instructions collected top-down.
void IRCanonicalizer::reorderInstructions(
SmallVector<Instruction *, 16> &Outputs) {
// This method assumes output instructions were collected top-down,
// otherwise the def-use chain may be broken.
SmallPtrSet<const Instruction *, 32> Visited;
// Walk up the tree.
for (auto &I : Outputs)
for (auto &OP : I->operands())
if (auto *IOP = dyn_cast<Instruction>(OP))
reorderInstruction(IOP, I, Visited);
}
/// Reduces def-use distance or places instruction at the end of the basic
/// block. Continues to walk up the def-use tree recursively. Used by
/// reorderInstructions().
///
/// \see reorderInstructions()
/// \param Used Pointer to the instruction whose value is used by the \p User.
/// \param User Pointer to the instruction which uses the \p Used.
/// \param Visited Set of visited instructions.
void IRCanonicalizer::reorderInstruction(
Instruction *Used, Instruction *User,
SmallPtrSet<const Instruction *, 32> &Visited) {
if (!Visited.count(Used)) {
Visited.insert(Used);
if (Used->getParent() == User->getParent()) {
// If Used and User share the same basic block move Used just before User.
Used->moveBefore(User);
} else {
// Otherwise move Used to the very end of its basic block.
Used->moveBefore(&Used->getParent()->back());
}
for (auto &OP : Used->operands()) {
if (auto *IOP = dyn_cast<Instruction>(OP)) {
// Walk up the def-use tree.
reorderInstruction(IOP, Used, Visited);
}
}
}
}
/// Reorders instruction's operands alphabetically. This method assumes
/// that passed instruction is commutative. Changing the operand order
/// in other instructions may change the semantics.
///
/// \param I Instruction whose operands will be reordered.
void IRCanonicalizer::reorderInstructionOperandsByNames(Instruction *I) {
// This method assumes that passed I is commutative,
// changing the order of operands in other instructions
// may change the semantics.
// Instruction operands for further sorting.
SmallVector<std::pair<std::string, Value *>, 4> Operands;
// Collect operands.
for (auto &OP : I->operands()) {
if (auto *VOP = dyn_cast<Value>(OP)) {
if (isa<Instruction>(VOP)) {
// This is an an instruction.
Operands.push_back(
std::pair<std::string, Value *>(VOP->getName(), VOP));
} else {
std::string TextRepresentation;
raw_string_ostream Stream(TextRepresentation);
OP->printAsOperand(Stream, false);
Operands.push_back(std::pair<std::string, Value *>(Stream.str(), VOP));
}
}
}
// Sort operands.
llvm::sort(Operands.begin(), Operands.end(), llvm::less_first());
// Reorder operands.
unsigned Position = 0;
for (auto &OP : I->operands()) {
OP.set(Operands[Position].second);
Position++;
}
}
/// Reorders PHI node's values according to the names of corresponding basic
/// blocks.
///
/// \param PN PHI node to canonicalize.
void IRCanonicalizer::reorderPHIIncomingValues(PHINode *PN) {
// Values for further sorting.
SmallVector<std::pair<Value *, BasicBlock *>, 2> Values;
// Collect blocks and corresponding values.
for (auto &BB : PN->blocks()) {
Value *V = PN->getIncomingValueForBlock(BB);
Values.push_back(std::pair<Value *, BasicBlock *>(V, BB));
}
// Sort values according to the name of a basic block.
llvm::sort(Values, [](const std::pair<Value *, BasicBlock *> &LHS,
const std::pair<Value *, BasicBlock *> &RHS) {
return LHS.second->getName() < RHS.second->getName();
});
// Swap.
for (unsigned i = 0; i < Values.size(); ++i) {
PN->setIncomingBlock(i, Values[i].second);
PN->setIncomingValue(i, Values[i].first);
}
}
/// Returns a vector of output instructions. An output is an instruction which
/// has side-effects or is ReturnInst. Uses isOutput().
///
/// \see isOutput()
/// \param F Function to collect outputs from.
SmallVector<Instruction *, 16>
IRCanonicalizer::collectOutputInstructions(Function &F) {
// Output instructions are collected top-down in each function,
// any change may break the def-use chain in reordering methods.
SmallVector<Instruction *, 16> Outputs;
for (auto &I : instructions(F))
if (isOutput(&I))
Outputs.push_back(&I);
return Outputs;
}
/// Helper method checking whether the instruction may have side effects or is
/// ReturnInst.
///
/// \param I Considered instruction.
bool IRCanonicalizer::isOutput(const Instruction *I) {
// Outputs are such instructions which may have side effects or is ReturnInst.
if (I->mayHaveSideEffects() || isa<ReturnInst>(I))
return true;
return false;
}
/// Helper method checking whether the instruction has users and only
/// immediate operands.
///
/// \param I Considered instruction.
bool IRCanonicalizer::isInitialInstruction(const Instruction *I) {
// Initial instructions are such instructions whose values are used by
// other instructions, yet they only depend on immediate values.
return !I->user_empty() && hasOnlyImmediateOperands(I);
}
/// Helper method checking whether the instruction has only immediate operands.
///
/// \param I Considered instruction.
bool IRCanonicalizer::hasOnlyImmediateOperands(const Instruction *I) {
for (const auto &OP : I->operands())
if (isa<Instruction>(OP))
return false; // Found non-immediate operand (instruction).
return true;
}
/// Helper method returning indices (distance from the beginning of the basic
/// block) of outputs using the \p I (eliminates repetitions). Walks down the
/// def-use tree recursively.
///
/// \param I Considered instruction.
/// \param Visited Set of visited instructions.
SetVector<int> IRCanonicalizer::getOutputFootprint(
Instruction *I, SmallPtrSet<const Instruction *, 32> &Visited) {
// Vector containing indexes of outputs (no repetitions),
// which use I in the order of walking down the def-use tree.
SetVector<int> Outputs;
if (!Visited.count(I)) {
Visited.insert(I);
if (isOutput(I)) {
// Gets output instruction's parent function.
Function *Func = I->getParent()->getParent();
// Finds and inserts the index of the output to the vector.
unsigned Count = 0;
for (const auto &B : *Func) {
for (const auto &E : B) {
if (&E == I)
Outputs.insert(Count);
Count++;
}
}
// Returns to the used instruction.
return Outputs;
}
for (auto *U : I->users()) {
if (auto *UI = dyn_cast<Instruction>(U)) {
// Vector for outputs which use UI.
SetVector<int> OutputsUsingUI = getOutputFootprint(UI, Visited);
// Insert the indexes of outputs using UI.
Outputs.insert(OutputsUsingUI.begin(), OutputsUsingUI.end());
}
}
}
// Return to the used instruction.
return Outputs;
}

View File

@ -29,6 +29,7 @@ void llvm::initializeTransformUtils(PassRegistry &Registry) {
initializeCanonicalizeAliasesLegacyPassPass(Registry);
initializeCanonicalizeFreezeInLoopsPass(Registry);
initializeInstNamerPass(Registry);
initializeIRCanonicalizerPass(Registry);
initializeLCSSAWrapperPassPass(Registry);
initializeLibCallsShrinkWrapLegacyPassPass(Registry);
initializeLoopSimplifyPass(Registry);

View File

@ -0,0 +1,7 @@
; RUN: opt -S --ir-canonicalizer < %s | FileCheck %s
; CHECK: @foo(i32 %a0, i32 %a1)
define i32 @foo(i32, i32) {
%tmp = mul i32 %0, %1
ret i32 %tmp
}

View File

@ -0,0 +1,8 @@
; RUN: opt -S --ir-canonicalizer --rename-all < %s | FileCheck %s
define i32 @foo(i32 %a0) {
; CHECK: bb{{([0-9]{5})}}
entry:
%a = add i32 %a0, 2
ret i32 %a
}

View File

@ -0,0 +1,12 @@
; RUN: opt -S --ir-canonicalizer --rename-all < %s | FileCheck %s
define i32 @foo(i32 %a0) {
entry:
; CHECK: %"vl{{([0-9]{5})}}(%a0, 2)"
%a = add i32 %a0, 2
; CHECK: %"op{{([0-9]{5})}}(vl{{([0-9]{5})}})"
%b = add i32 %a, 6
; CHECK: %"op{{([0-9]{5})}}(8, op{{([0-9]{5})}}(6, vl{{([0-9]{5})}}(%a0, 2)))"
%c = add i32 %b, 8
ret i32 %c
}

View File

@ -0,0 +1,14 @@
; RUN: opt -S --ir-canonicalizer < %s | FileCheck %s
define double @foo(double %a0, double %a1) {
entry:
; CHECK: %a
; CHECK: %c
; CHECK: %b
; CHECK: %d
%a = fmul double %a0, %a1
%b = fmul double %a0, 2.000000e+00
%c = fmul double %a, 6.000000e+00
%d = fmul double %b, 6.000000e+00
ret double %d
}

View File

@ -0,0 +1,24 @@
; RUN: opt -S --ir-canonicalizer < %s | FileCheck %s
declare double @foo()
declare double @bar()
define double @baz(double %x) {
entry:
%ifcond = fcmp one double %x, 0.000000e+00
br i1 %ifcond, label %then, label %else
then: ; preds = %entry
%calltmp = call double @foo()
br label %ifcont
else: ; preds = %entry
%calltmp1 = call double @bar()
br label %ifcont
ifcont: ; preds = %else, %then
; CHECK: %iftmp = phi double [ %calltmp1, %else ], [ %calltmp, %then ]
%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
ret double %iftmp
}