forked from OSchip/llvm-project
[AA] Hoist the logic to reformulate various AA queries in terms of other
parts of the AA interface out of the base class of every single AA result object. Because this logic reformulates the query in terms of some other aspect of the API, it would easily cause O(n^2) query patterns in alias analysis. These could in turn be magnified further based on the number of call arguments, and then further based on the number of AA queries made for a particular call. This ended up causing problems for Rust that were actually noticable enough to get a bug (PR26564) and probably other places as well. When originally re-working the AA infrastructure, the desire was to regularize the pattern of refinement without losing any generality. While I think it was successful, that is clearly proving to be too costly. And the cost is needless: we gain no actual improvement for this generality of making a direct query to tbaa actually be able to re-use some other alias analysis's refinement logic for one of the other APIs, or some such. In short, this is entirely wasted work. To the extent possible, delegation to other API surfaces should be done at the aggregation layer so that we can avoid re-walking the aggregation. In fact, this significantly simplifies the logic as we no longer need to smuggle the aggregation layer into each alias analysis (or the TargetLibraryInfo into each alias analysis just so we can form argument memory locations!). However, we also have some delegation logic inside of BasicAA and some of it even makes sense. When the delegation logic is baking in specific knowledge of aliasing properties of the LLVM IR, as opposed to simply reformulating the query to utilize a different alias analysis interface entry point, it makes a lot of sense to restrict that logic to a different layer such as BasicAA. So one aspect of the delegation that was in every AA base class is that when we don't have operand bundles, we re-use function AA results as a fallback for callsite alias results. This relies on the IR properties of calls and functions w.r.t. aliasing, and so seems a better fit to BasicAA. I've lifted the logic up to that point where it seems to be a natural fit. This still does a bit of redundant work (we query function attributes twice, once via the callsite and once via the function AA query) but it is *exactly* twice here, no more. The end result is that all of the delegation logic is hoisted out of the base class and into either the aggregation layer when it is a pure retargeting to a different API surface, or into BasicAA when it relies on the IR's aliasing properties. This should fix the quadratic query pattern reported in PR26564, although I don't have a stand-alone test case to reproduce it. It also seems general goodness. Now the numerous AAs that don't need target library info don't carry it around and depend on it. I think I can even rip out the general access to the aggregation layer and only expose that in BasicAA as it is the only place where we re-query in that manner. However, this is a non-trivial change to the AA infrastructure so I want to get some additional eyes on this before it lands. Sadly, it can't wait long because we should really cherry pick this into 3.8 if we're going to go this route. Differential Revision: http://reviews.llvm.org/D17329 llvm-svn: 262490
This commit is contained in:
parent
4de44b7ef8
commit
12884f7f80
|
@ -43,6 +43,7 @@
|
|||
#include "llvm/IR/Metadata.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
#include "llvm/Analysis/MemoryLocation.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
|
||||
namespace llvm {
|
||||
class BasicAAResult;
|
||||
|
@ -50,7 +51,6 @@ class LoadInst;
|
|||
class StoreInst;
|
||||
class VAArgInst;
|
||||
class DataLayout;
|
||||
class TargetLibraryInfo;
|
||||
class Pass;
|
||||
class AnalysisUsage;
|
||||
class MemTransferInst;
|
||||
|
@ -161,9 +161,8 @@ class AAResults {
|
|||
public:
|
||||
// Make these results default constructable and movable. We have to spell
|
||||
// these out because MSVC won't synthesize them.
|
||||
AAResults() {}
|
||||
AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
|
||||
AAResults(AAResults &&Arg);
|
||||
AAResults &operator=(AAResults &&Arg);
|
||||
~AAResults();
|
||||
|
||||
/// Register a specific AA result.
|
||||
|
@ -557,6 +556,8 @@ private:
|
|||
|
||||
template <typename T> friend class AAResultBase;
|
||||
|
||||
const TargetLibraryInfo &TLI;
|
||||
|
||||
std::vector<std::unique_ptr<Concept>> AAs;
|
||||
};
|
||||
|
||||
|
@ -753,20 +754,23 @@ protected:
|
|||
}
|
||||
};
|
||||
|
||||
const TargetLibraryInfo &TLI;
|
||||
|
||||
explicit AAResultBase(const TargetLibraryInfo &TLI) : TLI(TLI) {}
|
||||
explicit AAResultBase() {}
|
||||
|
||||
// Provide all the copy and move constructors so that derived types aren't
|
||||
// constrained.
|
||||
AAResultBase(const AAResultBase &Arg) : TLI(Arg.TLI) {}
|
||||
AAResultBase(AAResultBase &&Arg) : TLI(Arg.TLI) {}
|
||||
AAResultBase(const AAResultBase &Arg) {}
|
||||
AAResultBase(AAResultBase &&Arg) {}
|
||||
|
||||
/// Get a proxy for the best AA result set to query at this time.
|
||||
///
|
||||
/// When this result is part of a larger aggregation, this will proxy to that
|
||||
/// aggregation. When this result is used in isolation, it will just delegate
|
||||
/// back to the derived class's implementation.
|
||||
///
|
||||
/// Note that callers of this need to take considerable care to not cause
|
||||
/// performance problems when they use this routine, in the case of a large
|
||||
/// number of alias analyses being aggregated, it can be expensive to walk
|
||||
/// back across the chain.
|
||||
AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
|
||||
|
||||
public:
|
||||
|
@ -783,13 +787,6 @@ public:
|
|||
}
|
||||
|
||||
FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
|
||||
if (!CS.hasOperandBundles())
|
||||
// If CS has operand bundles then aliasing attributes from the function it
|
||||
// calls do not directly apply to the CallSite. This can be made more
|
||||
// precise in the future.
|
||||
if (const Function *F = CS.getCalledFunction())
|
||||
return getBestAAResults().getModRefBehavior(F);
|
||||
|
||||
return FMRB_UnknownModRefBehavior;
|
||||
}
|
||||
|
||||
|
@ -797,153 +794,15 @@ public:
|
|||
return FMRB_UnknownModRefBehavior;
|
||||
}
|
||||
|
||||
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
|
||||
ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
|
||||
return MRI_ModRef;
|
||||
}
|
||||
|
||||
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
|
||||
ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
|
||||
return MRI_ModRef;
|
||||
}
|
||||
};
|
||||
|
||||
/// Synthesize \c ModRefInfo for a call site and memory location by examining
|
||||
/// the general behavior of the call site and any specific information for its
|
||||
/// arguments.
|
||||
///
|
||||
/// This essentially, delegates across the alias analysis interface to collect
|
||||
/// information which may be enough to (conservatively) fulfill the query.
|
||||
template <typename DerivedT>
|
||||
ModRefInfo AAResultBase<DerivedT>::getModRefInfo(ImmutableCallSite CS,
|
||||
const MemoryLocation &Loc) {
|
||||
auto MRB = getBestAAResults().getModRefBehavior(CS);
|
||||
if (MRB == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
ModRefInfo Mask = MRI_ModRef;
|
||||
if (AAResults::onlyReadsMemory(MRB))
|
||||
Mask = MRI_Ref;
|
||||
|
||||
if (AAResults::onlyAccessesArgPointees(MRB)) {
|
||||
bool DoesAlias = false;
|
||||
ModRefInfo AllArgsMask = MRI_NoModRef;
|
||||
if (AAResults::doesAccessArgPointees(MRB)) {
|
||||
for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
|
||||
const Value *Arg = *AI;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
|
||||
MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
|
||||
AliasResult ArgAlias = getBestAAResults().alias(ArgLoc, Loc);
|
||||
if (ArgAlias != NoAlias) {
|
||||
ModRefInfo ArgMask = getBestAAResults().getArgModRefInfo(CS, ArgIdx);
|
||||
DoesAlias = true;
|
||||
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!DoesAlias)
|
||||
return MRI_NoModRef;
|
||||
Mask = ModRefInfo(Mask & AllArgsMask);
|
||||
}
|
||||
|
||||
// If Loc is a constant memory location, the call definitely could not
|
||||
// modify the memory location.
|
||||
if ((Mask & MRI_Mod) &&
|
||||
getBestAAResults().pointsToConstantMemory(Loc, /*OrLocal*/ false))
|
||||
Mask = ModRefInfo(Mask & ~MRI_Mod);
|
||||
|
||||
return Mask;
|
||||
}
|
||||
|
||||
/// Synthesize \c ModRefInfo for two call sites by examining the general
|
||||
/// behavior of the call site and any specific information for its arguments.
|
||||
///
|
||||
/// This essentially, delegates across the alias analysis interface to collect
|
||||
/// information which may be enough to (conservatively) fulfill the query.
|
||||
template <typename DerivedT>
|
||||
ModRefInfo AAResultBase<DerivedT>::getModRefInfo(ImmutableCallSite CS1,
|
||||
ImmutableCallSite CS2) {
|
||||
// If CS1 or CS2 are readnone, they don't interact.
|
||||
auto CS1B = getBestAAResults().getModRefBehavior(CS1);
|
||||
if (CS1B == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
auto CS2B = getBestAAResults().getModRefBehavior(CS2);
|
||||
if (CS2B == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
// If they both only read from memory, there is no dependence.
|
||||
if (AAResults::onlyReadsMemory(CS1B) && AAResults::onlyReadsMemory(CS2B))
|
||||
return MRI_NoModRef;
|
||||
|
||||
ModRefInfo Mask = MRI_ModRef;
|
||||
|
||||
// If CS1 only reads memory, the only dependence on CS2 can be
|
||||
// from CS1 reading memory written by CS2.
|
||||
if (AAResults::onlyReadsMemory(CS1B))
|
||||
Mask = ModRefInfo(Mask & MRI_Ref);
|
||||
|
||||
// If CS2 only access memory through arguments, accumulate the mod/ref
|
||||
// information from CS1's references to the memory referenced by
|
||||
// CS2's arguments.
|
||||
if (AAResults::onlyAccessesArgPointees(CS2B)) {
|
||||
ModRefInfo R = MRI_NoModRef;
|
||||
if (AAResults::doesAccessArgPointees(CS2B)) {
|
||||
for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
|
||||
const Value *Arg = *I;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
|
||||
auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
|
||||
|
||||
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
|
||||
// of CS1 on that location is the inverse.
|
||||
ModRefInfo ArgMask =
|
||||
getBestAAResults().getArgModRefInfo(CS2, CS2ArgIdx);
|
||||
if (ArgMask == MRI_Mod)
|
||||
ArgMask = MRI_ModRef;
|
||||
else if (ArgMask == MRI_Ref)
|
||||
ArgMask = MRI_Mod;
|
||||
|
||||
ArgMask = ModRefInfo(ArgMask &
|
||||
getBestAAResults().getModRefInfo(CS1, CS2ArgLoc));
|
||||
|
||||
R = ModRefInfo((R | ArgMask) & Mask);
|
||||
if (R == Mask)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
// If CS1 only accesses memory through arguments, check if CS2 references
|
||||
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
|
||||
if (AAResults::onlyAccessesArgPointees(CS1B)) {
|
||||
ModRefInfo R = MRI_NoModRef;
|
||||
if (AAResults::doesAccessArgPointees(CS1B)) {
|
||||
for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
|
||||
const Value *Arg = *I;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
|
||||
auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
|
||||
|
||||
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
|
||||
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
|
||||
// might Ref, then we care only about a Mod by CS2.
|
||||
ModRefInfo ArgMask = getBestAAResults().getArgModRefInfo(CS1, CS1ArgIdx);
|
||||
ModRefInfo ArgR = getBestAAResults().getModRefInfo(CS2, CS1ArgLoc);
|
||||
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
|
||||
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
|
||||
((ArgMask & MRI_Ref) != MRI_NoModRef &&
|
||||
(ArgR & MRI_Mod) != MRI_NoModRef))
|
||||
R = ModRefInfo((R | ArgMask) & Mask);
|
||||
|
||||
if (R == Mask)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
return Mask;
|
||||
}
|
||||
|
||||
/// Return true if this pointer is returned by a noalias function.
|
||||
bool isNoAliasCall(const Value *V);
|
||||
|
@ -1005,7 +864,7 @@ public:
|
|||
}
|
||||
|
||||
Result run(Function &F, AnalysisManager<Function> *AM) {
|
||||
Result R;
|
||||
Result R(AM->getResult<TargetLibraryAnalysis>(F));
|
||||
for (auto &Getter : FunctionResultGetters)
|
||||
(*Getter)(F, *AM, R);
|
||||
return R;
|
||||
|
@ -1067,7 +926,7 @@ AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
|
|||
|
||||
/// A helper for the legacy pass manager to populate \p AU to add uses to make
|
||||
/// sure the analyses required by \p createLegacyPMAAResults are available.
|
||||
void addUsedAAAnalyses(AnalysisUsage &AU);
|
||||
void getAAResultsAnalysisUsage(AnalysisUsage &AU);
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
|
|
|
@ -40,6 +40,7 @@ class BasicAAResult : public AAResultBase<BasicAAResult> {
|
|||
friend AAResultBase<BasicAAResult>;
|
||||
|
||||
const DataLayout &DL;
|
||||
const TargetLibraryInfo &TLI;
|
||||
AssumptionCache &AC;
|
||||
DominatorTree *DT;
|
||||
LoopInfo *LI;
|
||||
|
@ -48,13 +49,14 @@ public:
|
|||
BasicAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI,
|
||||
AssumptionCache &AC, DominatorTree *DT = nullptr,
|
||||
LoopInfo *LI = nullptr)
|
||||
: AAResultBase(TLI), DL(DL), AC(AC), DT(DT), LI(LI) {}
|
||||
: AAResultBase(), DL(DL), TLI(TLI), AC(AC), DT(DT), LI(LI) {}
|
||||
|
||||
BasicAAResult(const BasicAAResult &Arg)
|
||||
: AAResultBase(Arg), DL(Arg.DL), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI) {}
|
||||
BasicAAResult(BasicAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)), DL(Arg.DL), AC(Arg.AC), DT(Arg.DT),
|
||||
: AAResultBase(Arg), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
|
||||
LI(Arg.LI) {}
|
||||
BasicAAResult(BasicAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC),
|
||||
DT(Arg.DT), LI(Arg.LI) {}
|
||||
|
||||
/// Handle invalidation events from the new pass manager.
|
||||
///
|
||||
|
|
|
@ -32,7 +32,7 @@ class CFLAAResult : public AAResultBase<CFLAAResult> {
|
|||
struct FunctionInfo;
|
||||
|
||||
public:
|
||||
explicit CFLAAResult(const TargetLibraryInfo &TLI);
|
||||
explicit CFLAAResult();
|
||||
CFLAAResult(CFLAAResult &&Arg);
|
||||
~CFLAAResult();
|
||||
|
||||
|
|
|
@ -35,6 +35,7 @@ class GlobalsAAResult : public AAResultBase<GlobalsAAResult> {
|
|||
class FunctionInfo;
|
||||
|
||||
const DataLayout &DL;
|
||||
const TargetLibraryInfo &TLI;
|
||||
|
||||
/// The globals that do not have their addresses taken.
|
||||
SmallPtrSet<const GlobalValue *, 8> NonAddressTakenGlobals;
|
||||
|
|
|
@ -24,7 +24,6 @@
|
|||
#define LLVM_ANALYSIS_OBJCARCALIASANALYSIS_H
|
||||
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Pass.h"
|
||||
|
||||
namespace llvm {
|
||||
|
@ -42,8 +41,7 @@ class ObjCARCAAResult : public AAResultBase<ObjCARCAAResult> {
|
|||
const DataLayout &DL;
|
||||
|
||||
public:
|
||||
explicit ObjCARCAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI)
|
||||
: AAResultBase(TLI), DL(DL) {}
|
||||
explicit ObjCARCAAResult(const DataLayout &DL) : AAResultBase(), DL(DL) {}
|
||||
ObjCARCAAResult(ObjCARCAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)), DL(Arg.DL) {}
|
||||
|
||||
|
|
|
@ -28,8 +28,7 @@ class SCEVAAResult : public AAResultBase<SCEVAAResult> {
|
|||
ScalarEvolution &SE;
|
||||
|
||||
public:
|
||||
explicit SCEVAAResult(const TargetLibraryInfo &TLI, ScalarEvolution &SE)
|
||||
: AAResultBase(TLI), SE(SE) {}
|
||||
explicit SCEVAAResult(ScalarEvolution &SE) : AAResultBase(), SE(SE) {}
|
||||
SCEVAAResult(SCEVAAResult &&Arg) : AAResultBase(std::move(Arg)), SE(Arg.SE) {}
|
||||
|
||||
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
|
||||
|
|
|
@ -27,8 +27,7 @@ class ScopedNoAliasAAResult : public AAResultBase<ScopedNoAliasAAResult> {
|
|||
friend AAResultBase<ScopedNoAliasAAResult>;
|
||||
|
||||
public:
|
||||
explicit ScopedNoAliasAAResult(const TargetLibraryInfo &TLI)
|
||||
: AAResultBase(TLI) {}
|
||||
explicit ScopedNoAliasAAResult() : AAResultBase() {}
|
||||
ScopedNoAliasAAResult(ScopedNoAliasAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)) {}
|
||||
|
||||
|
|
|
@ -27,8 +27,7 @@ class TypeBasedAAResult : public AAResultBase<TypeBasedAAResult> {
|
|||
friend AAResultBase<TypeBasedAAResult>;
|
||||
|
||||
public:
|
||||
explicit TypeBasedAAResult(const TargetLibraryInfo &TLI)
|
||||
: AAResultBase(TLI) {}
|
||||
explicit TypeBasedAAResult() {}
|
||||
TypeBasedAAResult(TypeBasedAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
|
||||
|
||||
/// Handle invalidation events from the new pass manager.
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
||||
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
|
@ -194,7 +195,9 @@ namespace {
|
|||
(void)new llvm::ScalarEvolutionWrapperPass();
|
||||
llvm::Function::Create(nullptr, llvm::GlobalValue::ExternalLinkage)->viewCFGOnly();
|
||||
llvm::RGPassManager RGM;
|
||||
llvm::AliasAnalysis AA;
|
||||
llvm::TargetLibraryInfoImpl TLII;
|
||||
llvm::TargetLibraryInfo TLI(TLII);
|
||||
llvm::AliasAnalysis AA(TLI);
|
||||
llvm::AliasSetTracker X(AA);
|
||||
X.add(nullptr, 0, llvm::AAMDNodes()); // for -print-alias-sets
|
||||
(void) llvm::AreStatisticsEnabled();
|
||||
|
|
|
@ -52,18 +52,11 @@ using namespace llvm;
|
|||
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
|
||||
cl::init(false));
|
||||
|
||||
AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
|
||||
AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)) {
|
||||
for (auto &AA : AAs)
|
||||
AA->setAAResults(this);
|
||||
}
|
||||
|
||||
AAResults &AAResults::operator=(AAResults &&Arg) {
|
||||
AAs = std::move(Arg.AAs);
|
||||
for (auto &AA : AAs)
|
||||
AA->setAAResults(this);
|
||||
return *this;
|
||||
}
|
||||
|
||||
AAResults::~AAResults() {
|
||||
// FIXME; It would be nice to at least clear out the pointers back to this
|
||||
// aggregation here, but we end up with non-nesting lifetimes in the legacy
|
||||
|
@ -141,6 +134,44 @@ ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
|
|||
return Result;
|
||||
}
|
||||
|
||||
// Try to refine the mod-ref info further using other API entry points to the
|
||||
// aggregate set of AA results.
|
||||
auto MRB = getModRefBehavior(CS);
|
||||
if (MRB == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
if (onlyReadsMemory(MRB))
|
||||
Result = ModRefInfo(Result & MRI_Ref);
|
||||
|
||||
if (onlyAccessesArgPointees(MRB)) {
|
||||
bool DoesAlias = false;
|
||||
ModRefInfo AllArgsMask = MRI_NoModRef;
|
||||
if (doesAccessArgPointees(MRB)) {
|
||||
for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
|
||||
const Value *Arg = *AI;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
|
||||
MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
|
||||
AliasResult ArgAlias = alias(ArgLoc, Loc);
|
||||
if (ArgAlias != NoAlias) {
|
||||
ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
|
||||
DoesAlias = true;
|
||||
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!DoesAlias)
|
||||
return MRI_NoModRef;
|
||||
Result = ModRefInfo(Result & AllArgsMask);
|
||||
}
|
||||
|
||||
// If Loc is a constant memory location, the call definitely could not
|
||||
// modify the memory location.
|
||||
if ((Result & MRI_Mod) &&
|
||||
pointsToConstantMemory(Loc, /*OrLocal*/ false))
|
||||
Result = ModRefInfo(Result & ~MRI_Mod);
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
@ -156,6 +187,88 @@ ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
|
|||
return Result;
|
||||
}
|
||||
|
||||
// Try to refine the mod-ref info further using other API entry points to the
|
||||
// aggregate set of AA results.
|
||||
|
||||
// If CS1 or CS2 are readnone, they don't interact.
|
||||
auto CS1B = getModRefBehavior(CS1);
|
||||
if (CS1B == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
auto CS2B = getModRefBehavior(CS2);
|
||||
if (CS2B == FMRB_DoesNotAccessMemory)
|
||||
return MRI_NoModRef;
|
||||
|
||||
// If they both only read from memory, there is no dependence.
|
||||
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
|
||||
return MRI_NoModRef;
|
||||
|
||||
// If CS1 only reads memory, the only dependence on CS2 can be
|
||||
// from CS1 reading memory written by CS2.
|
||||
if (onlyReadsMemory(CS1B))
|
||||
Result = ModRefInfo(Result & MRI_Ref);
|
||||
|
||||
// If CS2 only access memory through arguments, accumulate the mod/ref
|
||||
// information from CS1's references to the memory referenced by
|
||||
// CS2's arguments.
|
||||
if (onlyAccessesArgPointees(CS2B)) {
|
||||
ModRefInfo R = MRI_NoModRef;
|
||||
if (doesAccessArgPointees(CS2B)) {
|
||||
for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
|
||||
const Value *Arg = *I;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
|
||||
auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
|
||||
|
||||
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
|
||||
// of CS1 on that location is the inverse.
|
||||
ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
|
||||
if (ArgMask == MRI_Mod)
|
||||
ArgMask = MRI_ModRef;
|
||||
else if (ArgMask == MRI_Ref)
|
||||
ArgMask = MRI_Mod;
|
||||
|
||||
ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc));
|
||||
|
||||
R = ModRefInfo((R | ArgMask) & Result);
|
||||
if (R == Result)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
// If CS1 only accesses memory through arguments, check if CS2 references
|
||||
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
|
||||
if (onlyAccessesArgPointees(CS1B)) {
|
||||
ModRefInfo R = MRI_NoModRef;
|
||||
if (doesAccessArgPointees(CS1B)) {
|
||||
for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
|
||||
const Value *Arg = *I;
|
||||
if (!Arg->getType()->isPointerTy())
|
||||
continue;
|
||||
unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
|
||||
auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
|
||||
|
||||
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
|
||||
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
|
||||
// might Ref, then we care only about a Mod by CS2.
|
||||
ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
|
||||
ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
|
||||
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
|
||||
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
|
||||
((ArgMask & MRI_Ref) != MRI_NoModRef &&
|
||||
(ArgR & MRI_Mod) != MRI_NoModRef))
|
||||
R = ModRefInfo((R | ArgMask) & Result);
|
||||
|
||||
if (R == Result)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return R;
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
@ -464,7 +577,8 @@ bool AAResultsWrapperPass::runOnFunction(Function &F) {
|
|||
// unregistering themselves with them. We need to carefully tear down the
|
||||
// previous object first, in this case replacing it with an empty one, before
|
||||
// registering new results.
|
||||
AAR.reset(new AAResults());
|
||||
AAR.reset(
|
||||
new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
||||
|
||||
// BasicAA is always available for function analyses. Also, we add it first
|
||||
// so that it can trump TBAA results when it proves MustAlias.
|
||||
|
@ -501,6 +615,7 @@ bool AAResultsWrapperPass::runOnFunction(Function &F) {
|
|||
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<BasicAAWrapperPass>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
|
||||
// We also need to mark all the alias analysis passes we will potentially
|
||||
// probe in runOnFunction as used here to ensure the legacy pass manager
|
||||
|
@ -516,7 +631,7 @@ void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|||
|
||||
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
|
||||
BasicAAResult &BAR) {
|
||||
AAResults AAR;
|
||||
AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
|
||||
|
||||
// Add in our explicitly constructed BasicAA results.
|
||||
if (!DisableBasicAA)
|
||||
|
@ -567,10 +682,11 @@ bool llvm::isIdentifiedFunctionLocal(const Value *V) {
|
|||
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
|
||||
}
|
||||
|
||||
void llvm::addUsedAAAnalyses(AnalysisUsage &AU) {
|
||||
void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
|
||||
// This function needs to be in sync with llvm::createLegacyPMAAResults -- if
|
||||
// more alias analyses are added to llvm::createLegacyPMAAResults, they need
|
||||
// to be added here also.
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
|
||||
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
|
||||
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
|
||||
|
|
|
@ -573,8 +573,15 @@ FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
|
|||
if (CS.onlyAccessesArgMemory())
|
||||
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
|
||||
|
||||
// The AAResultBase base class has some smarts, lets use them.
|
||||
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
|
||||
// If CS has operand bundles then aliasing attributes from the function it
|
||||
// calls do not directly apply to the CallSite. This can be made more
|
||||
// precise in the future.
|
||||
if (!CS.hasOperandBundles())
|
||||
if (const Function *F = CS.getCalledFunction())
|
||||
Min =
|
||||
FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
|
||||
|
||||
return Min;
|
||||
}
|
||||
|
||||
/// Returns the behavior when calling the given function. For use when the call
|
||||
|
@ -593,8 +600,7 @@ FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
|
|||
if (F->onlyAccessesArgMemory())
|
||||
Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
|
||||
|
||||
// Otherwise be conservative.
|
||||
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
|
||||
return Min;
|
||||
}
|
||||
|
||||
/// Returns true if this is a writeonly (i.e Mod only) parameter. Currently,
|
||||
|
|
|
@ -39,7 +39,6 @@
|
|||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/None.h"
|
||||
#include "llvm/ADT/Optional.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/InstVisitor.h"
|
||||
|
@ -59,7 +58,7 @@ using namespace llvm;
|
|||
|
||||
#define DEBUG_TYPE "cfl-aa"
|
||||
|
||||
CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {}
|
||||
CFLAAResult::CFLAAResult() : AAResultBase() {}
|
||||
CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {}
|
||||
CFLAAResult::~CFLAAResult() {}
|
||||
|
||||
|
@ -1090,15 +1089,12 @@ AliasResult CFLAAResult::query(const MemoryLocation &LocA,
|
|||
}
|
||||
|
||||
CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) {
|
||||
return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F));
|
||||
return CFLAAResult();
|
||||
}
|
||||
|
||||
char CFLAAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
|
||||
false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis",
|
||||
false, true)
|
||||
INITIALIZE_PASS(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", false,
|
||||
true)
|
||||
|
||||
ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); }
|
||||
|
||||
|
@ -1107,8 +1103,7 @@ CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) {
|
|||
}
|
||||
|
||||
bool CFLAAWrapperPass::doInitialization(Module &M) {
|
||||
Result.reset(
|
||||
new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
||||
Result.reset(new CFLAAResult());
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -1119,5 +1114,4 @@ bool CFLAAWrapperPass::doFinalization(Module &M) {
|
|||
|
||||
void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
|
|
|
@ -901,10 +901,10 @@ ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
|
|||
|
||||
GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
|
||||
const TargetLibraryInfo &TLI)
|
||||
: AAResultBase(TLI), DL(DL) {}
|
||||
: AAResultBase(), DL(DL), TLI(TLI) {}
|
||||
|
||||
GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)), DL(Arg.DL),
|
||||
: AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
|
||||
NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
|
||||
IndirectGlobals(std::move(Arg.IndirectGlobals)),
|
||||
AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
|
||||
|
|
|
@ -132,16 +132,12 @@ ModRefInfo ObjCARCAAResult::getModRefInfo(ImmutableCallSite CS,
|
|||
}
|
||||
|
||||
ObjCARCAAResult ObjCARCAA::run(Function &F, AnalysisManager<Function> *AM) {
|
||||
return ObjCARCAAResult(F.getParent()->getDataLayout(),
|
||||
AM->getResult<TargetLibraryAnalysis>(F));
|
||||
return ObjCARCAAResult(F.getParent()->getDataLayout());
|
||||
}
|
||||
|
||||
char ObjCARCAAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(ObjCARCAAWrapperPass, "objc-arc-aa",
|
||||
"ObjC-ARC-Based Alias Analysis", false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(ObjCARCAAWrapperPass, "objc-arc-aa",
|
||||
"ObjC-ARC-Based Alias Analysis", false, true)
|
||||
INITIALIZE_PASS(ObjCARCAAWrapperPass, "objc-arc-aa",
|
||||
"ObjC-ARC-Based Alias Analysis", false, true)
|
||||
|
||||
ImmutablePass *llvm::createObjCARCAAWrapperPass() {
|
||||
return new ObjCARCAAWrapperPass();
|
||||
|
@ -152,8 +148,7 @@ ObjCARCAAWrapperPass::ObjCARCAAWrapperPass() : ImmutablePass(ID) {
|
|||
}
|
||||
|
||||
bool ObjCARCAAWrapperPass::doInitialization(Module &M) {
|
||||
Result.reset(new ObjCARCAAResult(
|
||||
M.getDataLayout(), getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
||||
Result.reset(new ObjCARCAAResult(M.getDataLayout()));
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -164,5 +159,4 @@ bool ObjCARCAAWrapperPass::doFinalization(Module &M) {
|
|||
|
||||
void ObjCARCAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
|
|
|
@ -20,7 +20,6 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
using namespace llvm;
|
||||
|
||||
AliasResult SCEVAAResult::alias(const MemoryLocation &LocA,
|
||||
|
@ -112,15 +111,13 @@ Value *SCEVAAResult::GetBaseValue(const SCEV *S) {
|
|||
}
|
||||
|
||||
SCEVAAResult SCEVAA::run(Function &F, AnalysisManager<Function> *AM) {
|
||||
return SCEVAAResult(AM->getResult<TargetLibraryAnalysis>(F),
|
||||
AM->getResult<ScalarEvolutionAnalysis>(F));
|
||||
return SCEVAAResult(AM->getResult<ScalarEvolutionAnalysis>(F));
|
||||
}
|
||||
|
||||
char SCEVAAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(SCEVAAWrapperPass, "scev-aa",
|
||||
"ScalarEvolution-based Alias Analysis", false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(SCEVAAWrapperPass, "scev-aa",
|
||||
"ScalarEvolution-based Alias Analysis", false, true)
|
||||
|
||||
|
@ -134,13 +131,11 @@ SCEVAAWrapperPass::SCEVAAWrapperPass() : FunctionPass(ID) {
|
|||
|
||||
bool SCEVAAWrapperPass::runOnFunction(Function &F) {
|
||||
Result.reset(
|
||||
new SCEVAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
|
||||
getAnalysis<ScalarEvolutionWrapperPass>().getSE()));
|
||||
new SCEVAAResult(getAnalysis<ScalarEvolutionWrapperPass>().getSE()));
|
||||
return false;
|
||||
}
|
||||
|
||||
void SCEVAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<ScalarEvolutionWrapperPass>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
|
||||
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
||||
#include "llvm/ADT/SmallPtrSet.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Metadata.h"
|
||||
|
@ -175,15 +174,12 @@ bool ScopedNoAliasAAResult::mayAliasInScopes(const MDNode *Scopes,
|
|||
|
||||
ScopedNoAliasAAResult ScopedNoAliasAA::run(Function &F,
|
||||
AnalysisManager<Function> *AM) {
|
||||
return ScopedNoAliasAAResult(AM->getResult<TargetLibraryAnalysis>(F));
|
||||
return ScopedNoAliasAAResult();
|
||||
}
|
||||
|
||||
char ScopedNoAliasAAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(ScopedNoAliasAAWrapperPass, "scoped-noalias",
|
||||
"Scoped NoAlias Alias Analysis", false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(ScopedNoAliasAAWrapperPass, "scoped-noalias",
|
||||
"Scoped NoAlias Alias Analysis", false, true)
|
||||
INITIALIZE_PASS(ScopedNoAliasAAWrapperPass, "scoped-noalias",
|
||||
"Scoped NoAlias Alias Analysis", false, true)
|
||||
|
||||
ImmutablePass *llvm::createScopedNoAliasAAWrapperPass() {
|
||||
return new ScopedNoAliasAAWrapperPass();
|
||||
|
@ -194,8 +190,7 @@ ScopedNoAliasAAWrapperPass::ScopedNoAliasAAWrapperPass() : ImmutablePass(ID) {
|
|||
}
|
||||
|
||||
bool ScopedNoAliasAAWrapperPass::doInitialization(Module &M) {
|
||||
Result.reset(new ScopedNoAliasAAResult(
|
||||
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
||||
Result.reset(new ScopedNoAliasAAResult());
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -206,5 +201,4 @@ bool ScopedNoAliasAAWrapperPass::doFinalization(Module &M) {
|
|||
|
||||
void ScopedNoAliasAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
|
|
|
@ -122,7 +122,6 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
|
@ -585,15 +584,12 @@ bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
|
|||
}
|
||||
|
||||
TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> *AM) {
|
||||
return TypeBasedAAResult(AM->getResult<TargetLibraryAnalysis>(F));
|
||||
return TypeBasedAAResult();
|
||||
}
|
||||
|
||||
char TypeBasedAAWrapperPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(TypeBasedAAWrapperPass, "tbaa",
|
||||
"Type-Based Alias Analysis", false, true)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
||||
INITIALIZE_PASS_END(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
|
||||
false, true)
|
||||
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
|
||||
false, true)
|
||||
|
||||
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
|
||||
return new TypeBasedAAWrapperPass();
|
||||
|
@ -604,8 +600,7 @@ TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
|
|||
}
|
||||
|
||||
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
|
||||
Result.reset(new TypeBasedAAResult(
|
||||
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
||||
Result.reset(new TypeBasedAAResult());
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -616,5 +611,4 @@ bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
|
|||
|
||||
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.setPreservesAll();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
}
|
||||
|
|
|
@ -69,7 +69,7 @@ namespace {
|
|||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.addRequired<AssumptionCacheTracker>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
addUsedAAAnalyses(AU);
|
||||
getAAResultsAnalysisUsage(AU);
|
||||
CallGraphSCCPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
|
|
|
@ -1062,7 +1062,7 @@ struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
|
|||
AU.setPreservesCFG();
|
||||
AU.addRequired<AssumptionCacheTracker>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
addUsedAAAnalyses(AU);
|
||||
getAAResultsAnalysisUsage(AU);
|
||||
CallGraphSCCPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
|
|
|
@ -58,7 +58,7 @@ Inliner::Inliner(char &ID, bool InsertLifetime)
|
|||
void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
|
||||
AU.addRequired<AssumptionCacheTracker>();
|
||||
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
||||
addUsedAAAnalyses(AU);
|
||||
getAAResultsAnalysisUsage(AU);
|
||||
CallGraphSCCPass::getAnalysisUsage(AU);
|
||||
}
|
||||
|
||||
|
|
|
@ -80,9 +80,8 @@ struct TestCustomAAResult : AAResultBase<TestCustomAAResult> {
|
|||
|
||||
std::function<void()> CB;
|
||||
|
||||
explicit TestCustomAAResult(const TargetLibraryInfo &TLI,
|
||||
std::function<void()> CB)
|
||||
: AAResultBase(TLI), CB(std::move(CB)) {}
|
||||
explicit TestCustomAAResult(std::function<void()> CB)
|
||||
: AAResultBase(), CB(std::move(CB)) {}
|
||||
TestCustomAAResult(TestCustomAAResult &&Arg)
|
||||
: AAResultBase(std::move(Arg)), CB(std::move(Arg.CB)) {}
|
||||
|
||||
|
@ -117,8 +116,7 @@ public:
|
|||
}
|
||||
|
||||
bool doInitialization(Module &M) override {
|
||||
Result.reset(new TestCustomAAResult(
|
||||
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), std::move(CB)));
|
||||
Result.reset(new TestCustomAAResult(std::move(CB)));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -155,7 +153,7 @@ protected:
|
|||
|
||||
AAResults &getAAResults(Function &F) {
|
||||
// Reset the Function AA results first to clear out any references.
|
||||
AAR.reset(new AAResults());
|
||||
AAR.reset(new AAResults(TLI));
|
||||
|
||||
// Build the various AA results and register them.
|
||||
AC.reset(new AssumptionCache(F));
|
||||
|
|
|
@ -49,7 +49,7 @@ TEST(MemorySSA, RemoveMemoryAccess) {
|
|||
std::unique_ptr<MemorySSA> MSSA(new MemorySSA(*F));
|
||||
std::unique_ptr<DominatorTree> DT(new DominatorTree(*F));
|
||||
std::unique_ptr<AssumptionCache> AC(new AssumptionCache(*F));
|
||||
AAResults *AA = new AAResults();
|
||||
AAResults *AA = new AAResults(TLI);
|
||||
BasicAAResult *BAA = new BasicAAResult(DL, TLI, *AC, &*DT);
|
||||
AA->addAAResult(*BAA);
|
||||
MemorySSAWalker *Walker = MSSA->buildMemorySSA(AA, &*DT);
|
||||
|
|
Loading…
Reference in New Issue