[mlir][bufferize] Insert memref.cast ops during finalizing pass

The pass can currently not handle to_memref(to_tensor(x)) folding where a cast is necessary. This is required with the new unified bufferization. There is already a canonicalization pattern that handles such foldings and it should be used during this pass.

Differential Revision: https://reviews.llvm.org/D117988
This commit is contained in:
Matthias Springer 2022-01-27 19:04:44 +09:00
parent b88ca619d3
commit 1043107ce5
4 changed files with 57 additions and 4 deletions

View File

@ -20,6 +20,18 @@
#include "mlir/Dialect/Bufferization/IR/BufferizationOpsDialect.h.inc"
namespace mlir {
class RewritePatternSet;
class MLIRContext;
namespace bufferization {
/// Populate patterns for folding to_memref and to_tensor ops.
/// Note: to_memref(to_tensor(x)) without type changes are handled by a folder.
void populateBufferizationOpFoldingPatterns(RewritePatternSet &patterns,
MLIRContext *context);
} // namespace bufferization
} // namespace mlir
//===----------------------------------------------------------------------===//
// Bufferization Dialect Operations
//===----------------------------------------------------------------------===//

View File

@ -240,7 +240,8 @@ static LogicalResult foldToMemrefToTensorPair(RewriterBase &rewriter,
if (resultType.getShape()[i] != ShapedType::kDynamicSize)
continue;
auto index = rewriter.createOrFold<arith::ConstantIndexOp>(loc, i);
Value size = rewriter.create<tensor::DimOp>(loc, memrefToTensor, index);
Value size =
rewriter.create<memref::DimOp>(loc, memrefToTensor.memref(), index);
dynamicOperands.push_back(size);
}
// TODO: Use alloc/memcpy callback from BufferizationOptions if called via
@ -309,6 +310,11 @@ void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results,
context);
}
void bufferization::populateBufferizationOpFoldingPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add<TensorLoadToMemref>(context);
}
LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter,
const BufferizationState &state) {
// Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary.

View File

@ -92,6 +92,7 @@ void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
patterns.getContext());
populateBufferizationOpFoldingPatterns(patterns, patterns.getContext());
}
namespace {

View File

@ -1,11 +1,11 @@
// RUN: mlir-opt %s -finalizing-bufferize -split-input-file -verify-diagnostics | FileCheck %s
// CHECK-LABEL: func @eliminate_materializations(
// CHECK-SAME: %[[ARG:.*]]: memref<f32>) -> memref<f32> {
// CHECK: return %[[ARG]] : memref<f32>
// CHECK-LABEL: func @eliminate_materializations(
// CHECK-SAME: %[[ARG:.*]]: memref<f32>) -> memref<f32> {
func @eliminate_materializations(%arg0: memref<f32>) -> memref<f32> {
%0 = bufferization.to_tensor %arg0 : memref<f32>
%1 = bufferization.to_memref %0 : memref<f32>
// CHECK: return %[[ARG]] : memref<f32>
return %1 : memref<f32>
}
@ -26,3 +26,37 @@ func @unable_to_convert_lone_tensor_load(%arg0: memref<f32>) {
"test.sink"(%0) : (tensor<f32>) -> ()
return
}
// -----
// CHECK: #[[$MAP1:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
#map1 = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// CHECK-LABEL: func @insert_memref_cast(
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32>
func @insert_memref_cast(%arg0: memref<?xf32>) -> memref<?xf32, #map1> {
%0 = bufferization.to_tensor %arg0 : memref<?xf32>
%1 = bufferization.to_memref %0 : memref<?xf32, #map1>
// CHECK: %[[r:.*]] = memref.cast %[[arg0]] : memref<?xf32> to memref<?xf32, #[[$MAP1]]>
// CHECK: return %[[r]]
return %1 : memref<?xf32, #map1>
}
// -----
// CHECK: #[[$MAP2:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
#map2 = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
// CHECK-LABEL: func @insert_buffer_copy(
// CHECK-SAME: %[[arg0:.*]]: memref<?xf32, #[[$MAP2]]>
func @insert_buffer_copy(%arg0: memref<?xf32, #map2>) -> memref<?xf32> {
// CHECK: %[[c0:.*]] = arith.constant 0 : index
// CHECK: %[[dim0:.*]] = memref.dim %[[arg0]], %[[c0]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[dim0]]) : memref<?xf32>
// CHECK: memref.copy %[[arg0]], %[[alloc]]
%0 = bufferization.to_tensor %arg0 : memref<?xf32, #map2>
%1 = bufferization.to_memref %0 : memref<?xf32>
// CHECK: return %[[alloc]]
return %1 : memref<?xf32>
}