[mlir][Linalg] NFC - Extract a standalone LinalgInterfaces

This separation improves the layering and paves the way for more interfaces coming up in the future.

Differential revision: https://reviews.llvm.org/D95941
This commit is contained in:
Nicolas Vasilache 2021-02-03 22:19:12 +00:00
parent a2fdf9d4d7
commit 1029c82c1e
9 changed files with 374 additions and 312 deletions

View File

@ -45,8 +45,8 @@ add_public_tablegen_target(MLIRLinalgStructuredOpsIncGen)
add_dependencies(MLIRLinalgStructuredOpsIncGen LinalgOdsGen)
add_dependencies(mlir-headers MLIRLinalgStructuredOpsIncGen)
set(LLVM_TARGET_DEFINITIONS LinalgStructuredOpsInterface.td)
mlir_tablegen(LinalgStructuredOpsInterfaces.h.inc -gen-op-interface-decls)
mlir_tablegen(LinalgStructuredOpsInterfaces.cpp.inc -gen-op-interface-defs)
add_public_tablegen_target(MLIRLinalgStructuredOpsInterfaceIncGen)
add_dependencies(mlir-headers MLIRLinalgStructuredOpsInterfaceIncGen)
set(LLVM_TARGET_DEFINITIONS LinalgInterfaces.td)
mlir_tablegen(LinalgInterfaces.h.inc -gen-op-interface-decls)
mlir_tablegen(LinalgInterfaces.cpp.inc -gen-op-interface-defs)
add_public_tablegen_target(MLIRLinalgInterfacesIncGen)
add_dependencies(mlir-headers MLIRLinalgInterfacesIncGen)

View File

@ -0,0 +1,44 @@
//===- LinalgInterface.h - Linalg operations interfaces -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the operation interfaces for Linalg operations.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_LINALG_IR_LINALGINTERFACES_H_
#define MLIR_DIALECT_LINALG_IR_LINALGINTERFACES_H_
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
namespace mlir {
namespace linalg {
/// Returns the values obtained by applying `map` to the list of values.
SmallVector<Value, 4> applyMapToValues(OpBuilder &b, Location loc,
AffineMap map, ValueRange values);
namespace detail {
/// Verify that `op` conforms to the invariants of StructuredOpInterface
LogicalResult verifyStructuredOpInterface(Operation *op);
} // namespace detail
} // namespace linalg
} // namespace mlir
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.h.inc"
/// Include the generated interface declarations.
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h.inc"
#endif // MLIR_DIALECT_LINALG_IR_LINALGINTERFACES_H_

View File

@ -1,4 +1,4 @@
//===- LinalgStructuredInterface.td- Linalg StructuredIfce -*- tablegen -*-===//
//===- LinalgInterfaces.td - Linalg Interfaces Declaration -*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
@ -6,14 +6,14 @@
//
//===----------------------------------------------------------------------===//
//
// This is the definition file for the structured interface for Linalg ops.
// This is the definition file for the structured interface sfor Linalg ops.
//
//===----------------------------------------------------------------------===//
#ifndef LINALG_IR_STRUCTURED_OPS_INTERFACE
#define LINALG_IR_STRUCTURED_OPS_INTERFACE
#ifndef LINALG_IR_LINALGINTERFACES
#define LINALG_IR_LINALGINTERFACES
include "mlir/Dialect/Linalg/IR/LinalgBase.td"
include "mlir/IR/OpBase.td"
// The linalg 'LinalgStructuredInterface' provides access to the 'LinalgOp'
// interface.
@ -33,10 +33,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
/*methodName=*/"getNumPayloadInductionVariables",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{
return isa<IndexedGenericOp>(this->getOperation()) ?
$_op.getNumLoops() : 0;
}]
/*defaultImplementation=*/""
>,
//===------------------------------------------------------------------===//
// Loop types handling.
@ -570,7 +567,7 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
/*methodBody=*/"",
/*defaultImplementation=*/[{
unsigned bbArgNumber =
getNumPayloadInductionVariables() + opOperand->getOperandNumber();
$_op.getNumPayloadInductionVariables() + opOperand->getOperandNumber();
// Safeguard against the named linalg ops that are manually defined and
// that only support buffer semantics: we should not be there.
// Such ops have an empty regionBuilder and are not constructed with a
@ -1117,4 +1114,4 @@ def LinalgStructuredInterface : OpInterface<"LinalgOp"> {
let verify = [{ return detail::verifyStructuredOpInterface($_op); }];
}
#endif // LINALG_IR_STRUCTURED_OPS_INTERFACE
#endif // LINALG_IR_LINALGINTERFACES

View File

@ -42,10 +42,6 @@ class PoolingSumOp;
using LoopRangeBuilder =
std::function<SmallVector<Range, 4>(OpBuilder &, Location)>;
/// Returns the values obtained by applying `map` to the list of values.
SmallVector<Value, 4> applyMapToValues(OpBuilder &b, Location loc,
AffineMap map, ValueRange values);
/// Provide a very simple inference procedure to build the loop ranges from the
/// op and its operands. This only works with permutation affine maps and
/// patterns of the form `(m, n)[s] -> (m + n - s floordiv 2)`.
@ -122,7 +118,7 @@ namespace linalg {
class IndexedGenericOp;
} // namespace linalg
} // namespace mlir
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.h.inc"
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#define GET_OP_CLASSES
#include "mlir/Dialect/Linalg/IR/LinalgOps.h.inc"

View File

@ -15,7 +15,7 @@
#define LINALG_STRUCTURED_OPS
include "mlir/Dialect/Linalg/IR/LinalgBase.td"
include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterface.td"
include "mlir/Dialect/Linalg/IR/LinalgInterfaces.td"
include "mlir/Interfaces/CopyOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
@ -25,13 +25,22 @@ include "mlir/Interfaces/SideEffectInterfaces.td"
// depending on the specific Linalg op.
class LinalgStructuredBase_Op<string mnemonic, list<OpTrait> props>
: Op<Linalg_Dialect, mnemonic, !listconcat(props, [
LinalgStructuredInterface])> {}
LinalgStructuredInterface])> {
code structuredOpsBaseDecls = [{
// Return the number of induction variables in the basic block. This should
// always be 0 for index-free linalg ops. For IndexedGeneric, this must be
// equal to numLoops.
unsigned getNumPayloadInductionVariables() {
return isa<IndexedGenericOp>(this->getOperation()) ? getNumLoops() : 0;
}
}];
}
class LinalgStructured_Op<string mnemonic, list<OpTrait> props>
: LinalgStructuredBase_Op<mnemonic,
!listconcat(props, [
DeclareOpInterfaceMethods<MemoryEffectsOpInterface>])> {
code libraryCallName = [{
code structuredOpsDecls = structuredOpsBaseDecls # [{
std::string getLibraryCallName() {
return generateLibraryCallName(getOperation());
}
@ -110,7 +119,7 @@ def CopyOp : LinalgStructured_Op<"copy", [CopyOpInterface]> {
$_builder, $_state, input, output, AffineMapAttr(), AffineMapAttr());
}]>];
let extraClassDeclaration = libraryCallName # [{
let extraClassDeclaration = structuredOpsDecls # [{
ValueRange inputs() { return getOperands().take_front(); }
ValueRange outputs() { return getOperands().take_back(); }
@ -155,7 +164,7 @@ def FillOp : LinalgStructured_Op<"fill", []> {
let arguments = (ins AnyShaped:$output,
AnyTypeOf<[AnyFloat, AnySignlessInteger, AnyVector]>:$value);
let results = (outs Optional<AnyRankedTensor>:$result);
let extraClassDeclaration = libraryCallName # [{
let extraClassDeclaration = structuredOpsDecls # [{
ValueRange inputs() { return {}; }
ValueRange outputs() { return getOperands().take_front(); }
@ -232,7 +241,7 @@ class PoolingBase_Op<string mnemonic, list<OpTrait> props>
for both low and high in each of the dimensions, if not specified.
}];
code commonUtils = libraryCallName # [{
code commonUtils = structuredOpsDecls # [{
int64_t getStride(unsigned i) {
assert(i < getNumWindowLoops());
if (!strides().hasValue()) return 1;
@ -497,7 +506,7 @@ class GenericOpBase<string mnemonic> : LinalgStructuredBase_Op<mnemonic, [
OptionalAttr<ArrayAttr>:$sparse);
let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
let regions = (region AnyRegion:$region);
let extraClassDeclaration = [{
let extraClassDeclaration = structuredOpsBaseDecls # [{
SmallVector<StringRef, 8> linalgTraitAttrNames() {
return SmallVector<StringRef, 8>{
getDocAttrName(),

View File

@ -1,4 +1,5 @@
add_mlir_dialect_library(MLIRLinalg
LinalgInterfaces.cpp
LinalgOps.cpp
LinalgTypes.cpp
@ -6,9 +7,9 @@ add_mlir_dialect_library(MLIRLinalg
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Linalg
DEPENDS
MLIRLinalgInterfacesIncGen
MLIRLinalgOpsIncGen
MLIRLinalgStructuredOpsIncGen
MLIRLinalgStructuredOpsInterfaceIncGen
LINK_LIBS PUBLIC
MLIRAffine

View File

@ -0,0 +1,294 @@
//===- LinalgInterfaces.cpp - Linalg interfaces implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "llvm/ADT/SmallSet.h"
using namespace mlir;
using namespace mlir::linalg;
/// Include the definitions of the copy operation interface.
#include "mlir/Dialect/Linalg/IR/LinalgInterfaces.cpp.inc"
/// Fully compose map with operands and canonicalize the result.
/// Return the `createOrFold`'ed AffineApply op.
static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc,
AffineMap map,
ValueRange operandsRef) {
SmallVector<Value, 4> operands(operandsRef.begin(), operandsRef.end());
fullyComposeAffineMapAndOperands(&map, &operands);
canonicalizeMapAndOperands(&map, &operands);
return b.createOrFold<AffineApplyOp>(loc, map, operands);
}
SmallVector<Value, 4> mlir::linalg::applyMapToValues(OpBuilder &b, Location loc,
AffineMap map,
ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(map.getNumResults());
unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols();
// For each `expr` in `map`, applies the `expr` to the values extracted from
// ranges. If the resulting application can be folded into a Value, the
// folding occurs eagerly.
for (auto expr : map.getResults()) {
AffineMap map = AffineMap::get(numDims, numSym, expr);
res.push_back(createFoldedComposedAffineApply(b, loc, map, values));
}
return res;
}
SmallVector<Value, 4> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
Location loc) {
SmallVector<Value, 4> res;
for (Value v : getShapedOperands()) {
ShapedType t = v.getType().template cast<ShapedType>();
for (unsigned i = 0, e = t.getRank(); i < e; ++i)
res.push_back(b.create<DimOp>(loc, v, i));
}
return res;
}
SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
auto viewSizes = createFlatListOfOperandDims(b, loc);
SmallVector<Range, 4> res(numDims);
Value zeroVal = b.create<ConstantIndexOp>(loc, 0);
Value oneVal = b.create<ConstantIndexOp>(loc, 1);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>()) {
if (res[d.getPosition()].offset)
continue;
res[d.getPosition()] = Range{zeroVal, viewSizes[idx], oneVal};
}
}
return res;
}
/// Visitor to check if any of the given set of positions from AffineDimExprs
/// are used within an AffineExpr.
struct HasAffineDimExprVisitor
: public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
HasAffineDimExprVisitor(llvm::SmallSet<unsigned, 4> &positions)
: positions(positions) {}
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr) {
return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
}
bool visitDimExpr(AffineDimExpr dimExpr) {
return positions.count(dimExpr.getPosition());
}
bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
private:
llvm::SmallSet<unsigned, 4> positions;
};
Optional<Value> LinalgOp::inferResultDimFromInputShapes(OpBuilder &b,
Location loc,
unsigned resultIdx,
unsigned dim) {
// An example that helps understand the logic below.
// Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
// We want to express the shape of dim 0 of O in terms of shape of the inputs.
// This is achieved as follows.
// loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
// subMapOfResultDim = (d0, d1, d2) -> (d0 + d1)
// shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
// resultFromFromInputDim = subMapOfResultDim.compose(shapesToLoopMap)
// = (d0, d1, d2, d3, d4, d5) -> (d0 + d1)
AffineMap loopsToShapesMap = getLoopsToShapesMap();
// Find the position in the above map that represents the shape of the
// result:dim being inferred.
Optional<unsigned> resultDimSubMapPos =
getResultValueDimPositionInLoopsToShapeMap(resultIdx, dim);
if (!resultDimSubMapPos)
return {};
/// From loopsToShapesMap extract the submap that represents the shape of the
/// (resultIdx, dim) needed
AffineMap loopToResultDimShapeMap =
loopsToShapesMap.getSubMap(*resultDimSubMapPos);
AffineMap operandShapesToResultDimMap =
loopToResultDimShapeMap.compose(getShapesToLoopsMap());
// Check that the result dim map does not contain the positions corresponding
// to the outputs.
llvm::SmallSet<unsigned, 4> outputDims;
unsigned outputDimPosStart =
getResultValueDimPositionInLoopsToShapeMap(0, 0).getValue();
unsigned outputDimPosEnd =
getResultValueDimPositionInLoopsToShapeMap(getNumOutputs() - 1,
getOutputOpOperands()
.back()
.get()
.getType()
.cast<ShapedType>()
.getRank() -
1)
.getValue();
llvm::for_each(llvm::seq<unsigned>(outputDimPosStart, outputDimPosEnd),
[&outputDims](unsigned dim) { outputDims.insert(dim); });
HasAffineDimExprVisitor checkDimExpr(outputDims);
if (checkDimExpr.visit(operandShapesToResultDimMap.getResult(0)))
return llvm::None;
return applyMapToValues(b, loc, operandShapesToResultDimMap,
createFlatListOfOperandDims(b, loc))[0];
}
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
// Expect at least one shaped operand.
// This means an op that constructs a tensor out of indices cannot be a
// LinalgOp at the moment. For now this will have to be a special op until we
// have output shape operands that are not tensors.
auto nShapedOperands = linalgOp.getNumShapedOperands();
if (nShapedOperands == 0)
return linalgOp.emitOpError("expected at least 1 Shaped operand");
if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nShapedOperands)))
return failure();
// Should have at least one output tensor per result tensor.
// Can also have outbut buffers that do not correspond to results.
if (op->getNumResults() > linalgOp.getNumOutputTensors())
return op->emitError("unexpected #results > #outputs");
// All shaped operands must be indexed.
if (linalgOp.indexing_maps().size() != linalgOp.getNumShapedOperands())
return linalgOp.emitOpError("expected the number of indexing_map (")
<< linalgOp.indexing_maps().size()
<< ") to be equal to the number of shaped operands ("
<< linalgOp.getNumShapedOperands() << ")";
SmallVector<AffineMap, 4> indexingMaps;
indexingMaps.reserve(linalgOp.indexing_maps().size());
for (auto en : llvm::enumerate(linalgOp.indexing_maps())) {
auto idx = en.index();
auto m = en.value().template cast<AffineMapAttr>().getValue();
indexingMaps.push_back(m); // Save reference to map for further checks.
auto shapedValue = linalgOp.getShapedType(idx);
// Symbols disallowed.
if (m.getNumSymbols() != 0)
return linalgOp.emitOpError("unexpected symbols in indexing_map #")
<< idx;
// Domain must be consistent.
auto nLoops = linalgOp.getNumLoops();
if (m.getNumDims() != nLoops)
return linalgOp.emitOpError("expected indexing_map #")
<< idx << " to have " << nLoops
<< " dim(s) to match the number of loops";
if (m.getNumResults() != shapedValue.getRank())
return linalgOp.emitOpError("expected shaped value rank (")
<< shapedValue.getRank()
<< ") to match the result rank of indexing_map #" << idx << " ("
<< m.getNumResults() << ")";
}
SmallVector<AffineExpr, 4> redDims;
linalgOp.getReductionDims(redDims);
// Simplifying assumption: either full tensor or full buffer mode.
// This allows simpler verification of output operands vs result types
// without premature tracking of which operand is what in mixed-mode.
// TODO: relax when mixed-mode needs to pass verification.
if (linalgOp.getNumOutputBuffers() > 0 && linalgOp.getNumOutputTensors() > 0)
return op->emitError("expected output operands to all have tensor type or "
"all have buffer type");
for (auto it :
llvm::zip(linalgOp.getOutputOpOperands(), op->getResultTypes())) {
if (!std::get<0>(it).get().getType().isa<RankedTensorType>())
continue;
if (std::get<0>(it).get().getType() != std::get<1>(it))
return op->emitError("expected type of operand #")
<< std::get<0>(it).getOperandNumber() << " ("
<< std::get<0>(it).get().getType() << ")"
<< " to match type of corresponding result (" << std::get<1>(it)
<< ")";
}
// Output tensor indexing map may not depend on reduction indices.
for (OpOperand &opOperand : linalgOp.getOutputOpOperands()) {
AffineMap outputMap = linalgOp.getIndexingMap(opOperand.getOperandNumber());
for (auto expr : outputMap.getResults()) {
for (auto dim : redDims) {
unsigned pos = dim.cast<AffineDimExpr>().getPosition();
if (expr.isFunctionOfDim(pos)) {
std::string exprStr;
{
llvm::raw_string_ostream os(exprStr);
os << expr;
}
return op->emitError(
"unexpected output tensor expression in indexing map #")
<< (opOperand.getOperandNumber() - linalgOp.getNumInputs())
<< " a.k.a '" << exprStr
<< "' is function of reduction iterator 'd" << pos << "'";
}
}
}
}
// Named ops that are defined manually have a region builder but no region at
// this time. Assume the region is well-formed by specification.
// TODO: use linalg-ods-gen for all ops when we have enough expressive power.
if (linalgOp->getNumRegions() == 0) {
assert(!linalgOp.getRegionBuilder() && "regionBuilder but no region");
return success();
}
auto &region = linalgOp->getRegion(0);
if (linalgOp->getNumRegions() > 1 || !llvm::hasSingleElement(region))
return op->emitOpError("expected 1 region with 1 block");
if (!linalgOp.getShapesToLoopsMap())
return op->emitOpError("expected the shape-to-loops map to be non-null");
// Simplifying assumption: bbargs match 1-1 with shape operands elemental
// types.
// TODO: once ranked shape types are plugged in, we may want to drop the
// corresponding bbargs, that can never be read from. This will be subject to
// consistency discussions (i.e. what to do with output tensors whose bbarg is
// not used).
Block &block = linalgOp->getRegion(0).front();
unsigned numBBIvs = linalgOp.getNumPayloadInductionVariables();
if (linalgOp.getNumShapedOperands() + numBBIvs != block.getNumArguments())
return op->emitError("expected as many non-induction variable region "
"arguments as the number of shaped operands");
// Note: the number and type of yield values are checked in the YieldOp.
for (unsigned i = 0; i < numBBIvs; ++i)
if (!block.getArgument(i).getType().isIndex())
return op->emitOpError("expected index block argument #") << i;
unsigned idx = 0;
for (auto it : llvm::zip(linalgOp.getShapedOperandTypes(),
block.getArguments().drop_front(numBBIvs))) {
if (std::get<0>(it).getElementType() != std::get<1>(it).getType())
return op->emitError("expected type of bb argument #")
<< (idx + numBBIvs) << " (" << std::get<1>(it).getType() << ")"
<< " to match element type of corresponding shaped operand ("
<< std::get<0>(it).getElementType() << ")";
++idx;
}
return success();
}

View File

@ -32,138 +32,6 @@
using namespace mlir;
using namespace mlir::linalg;
/// Fully compose map with operands and canonicalize the result.
/// Return the `createOrFold`'ed AffineApply op.
static Value createFoldedComposedAffineApply(OpBuilder &b, Location loc,
AffineMap map,
ValueRange operandsRef) {
SmallVector<Value, 4> operands(operandsRef.begin(), operandsRef.end());
fullyComposeAffineMapAndOperands(&map, &operands);
canonicalizeMapAndOperands(&map, &operands);
return b.createOrFold<AffineApplyOp>(loc, map, operands);
}
SmallVector<Value, 4> mlir::linalg::applyMapToValues(OpBuilder &b, Location loc,
AffineMap map,
ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(map.getNumResults());
unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols();
// For each `expr` in `map`, applies the `expr` to the values extracted from
// ranges. If the resulting application can be folded into a Value, the
// folding occurs eagerly.
for (auto expr : map.getResults()) {
AffineMap map = AffineMap::get(numDims, numSym, expr);
res.push_back(createFoldedComposedAffineApply(b, loc, map, values));
}
return res;
}
SmallVector<Value, 4> LinalgOp::createFlatListOfOperandDims(OpBuilder &b,
Location loc) {
SmallVector<Value, 4> res;
for (Value v : getShapedOperands()) {
ShapedType t = v.getType().template cast<ShapedType>();
for (unsigned i = 0, e = t.getRank(); i < e; ++i)
res.push_back(b.create<DimOp>(loc, v, i));
}
return res;
}
SmallVector<Range, 4> LinalgOp::createLoopRanges(OpBuilder &b, Location loc) {
AffineMap map = getLoopsToShapesMap();
unsigned numDims = map.getNumDims(), numRes = map.getNumResults();
auto viewSizes = createFlatListOfOperandDims(b, loc);
SmallVector<Range, 4> res(numDims);
Value zeroVal = b.create<ConstantIndexOp>(loc, 0);
Value oneVal = b.create<ConstantIndexOp>(loc, 1);
for (unsigned idx = 0; idx < numRes; ++idx) {
auto result = map.getResult(idx);
if (auto d = result.dyn_cast<AffineDimExpr>()) {
if (res[d.getPosition()].offset)
continue;
res[d.getPosition()] = Range{zeroVal, viewSizes[idx], oneVal};
}
}
return res;
}
/// Visitor to check if any of the given set of positions from AffineDimExprs
/// are used within an AffineExpr.
struct HasAffineDimExprVisitor
: public AffineExprVisitor<HasAffineDimExprVisitor, bool> {
HasAffineDimExprVisitor(llvm::SmallSet<unsigned, 4> &positions)
: positions(positions) {}
bool visitAffineBinaryOpExpr(AffineBinaryOpExpr binaryOpExpr) {
return visit(binaryOpExpr.getLHS()) || visit(binaryOpExpr.getRHS());
}
bool visitDimExpr(AffineDimExpr dimExpr) {
return positions.count(dimExpr.getPosition());
}
bool visitConstantExpr(AffineConstantExpr constExpr) { return false; }
bool visitSymbolExpr(AffineSymbolExpr symbolExpr) { return false; }
private:
llvm::SmallSet<unsigned, 4> positions;
};
Optional<Value> LinalgOp::inferResultDimFromInputShapes(OpBuilder &b,
Location loc,
unsigned resultIdx,
unsigned dim) {
// An example that helps understand the logic below.
// Consider the following expression O(i+j, j) += A(i,k) * B(k, j)
// We want to express the shape of dim 0 of O in terms of shape of the inputs.
// This is achieved as follows.
// loopsToShapesMap = (d0, d1, d2) -> (d0, d2, d2, d1, d0 + d1, d1)
// subMapOfResultDim = (d0, d1, d2) -> (d0 + d1)
// shapesToLoopsMap = (d0, d2, d2, d3, d4, d5) -> (d0, d3, d2)
// resultFromFromInputDim = subMapOfResultDim.compose(shapesToLoopMap)
// = (d0, d1, d2, d3, d4, d5) -> (d0 + d1)
AffineMap loopsToShapesMap = getLoopsToShapesMap();
// Find the position in the above map that represents the shape of the
// result:dim being inferred.
Optional<unsigned> resultDimSubMapPos =
getResultValueDimPositionInLoopsToShapeMap(resultIdx, dim);
if (!resultDimSubMapPos)
return {};
/// From loopsToShapesMap extract the submap that represents the shape of the
/// (resultIdx, dim) needed
AffineMap loopToResultDimShapeMap =
loopsToShapesMap.getSubMap(*resultDimSubMapPos);
AffineMap operandShapesToResultDimMap =
loopToResultDimShapeMap.compose(getShapesToLoopsMap());
// Check that the result dim map does not contain the positions corresponding
// to the outputs.
llvm::SmallSet<unsigned, 4> outputDims;
unsigned outputDimPosStart =
getResultValueDimPositionInLoopsToShapeMap(0, 0).getValue();
unsigned outputDimPosEnd =
getResultValueDimPositionInLoopsToShapeMap(getNumOutputs() - 1,
getOutputOpOperands()
.back()
.get()
.getType()
.cast<ShapedType>()
.getRank() -
1)
.getValue();
llvm::for_each(llvm::seq<unsigned>(outputDimPosStart, outputDimPosEnd),
[&outputDims](unsigned dim) { outputDims.insert(dim); });
HasAffineDimExprVisitor checkDimExpr(outputDims);
if (checkDimExpr.visit(operandShapesToResultDimMap.getResult(0)))
return llvm::None;
return applyMapToValues(b, loc, operandShapesToResultDimMap,
createFlatListOfOperandDims(b, loc))[0];
}
/// Forward declarations.
template <typename NamedStructuredOpType>
static void buildNamedStructuredOpRegionAndAttributes(OpBuilder &opBuilder,
@ -215,11 +83,6 @@ static LogicalResult foldMemRefCast(Operation *op) {
return success(folded);
}
///////////////////// Operations defined with Tablegen /////////////////////////
// For such operations that do not correspond to library calls (i.e. defined in
// LinalgOps.td), we define an overloaded `print` function and a
// parse`className` function.
//===----------------------------------------------------------------------===//
// FillOp
//===----------------------------------------------------------------------===//
@ -471,148 +334,6 @@ void IndexedGenericOp::getEffects(
getInputBuffers(), getOutputBuffers());
}
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
// Expect at least one shaped operand.
// This means an op that constructs a tensor out of indices cannot be a
// LinalgOp at the moment. For now this will have to be a special op until we
// have output shape operands that are not tensors.
auto nShapedOperands = linalgOp.getNumShapedOperands();
if (nShapedOperands == 0)
return linalgOp.emitOpError("expected at least 1 Shaped operand");
if (failed(OpTrait::impl::verifyAtLeastNOperands(op, nShapedOperands)))
return failure();
// Should have at least one output tensor per result tensor.
// Can also have outbut buffers that do not correspond to results.
if (op->getNumResults() > linalgOp.getNumOutputTensors())
return op->emitError("unexpected #results > #outputs");
// All shaped operands must be indexed.
if (linalgOp.indexing_maps().size() != linalgOp.getNumShapedOperands())
return linalgOp.emitOpError("expected the number of indexing_map (")
<< linalgOp.indexing_maps().size()
<< ") to be equal to the number of shaped operands ("
<< linalgOp.getNumShapedOperands() << ")";
SmallVector<AffineMap, 4> indexingMaps;
indexingMaps.reserve(linalgOp.indexing_maps().size());
for (auto en : llvm::enumerate(linalgOp.indexing_maps())) {
auto idx = en.index();
auto m = en.value().template cast<AffineMapAttr>().getValue();
indexingMaps.push_back(m); // Save reference to map for further checks.
auto shapedValue = linalgOp.getShapedType(idx);
// Symbols disallowed.
if (m.getNumSymbols() != 0)
return linalgOp.emitOpError("unexpected symbols in indexing_map #")
<< idx;
// Domain must be consistent.
auto nLoops = linalgOp.getNumLoops();
if (m.getNumDims() != nLoops)
return linalgOp.emitOpError("expected indexing_map #")
<< idx << " to have " << nLoops
<< " dim(s) to match the number of loops";
if (m.getNumResults() != shapedValue.getRank())
return linalgOp.emitOpError("expected shaped value rank (")
<< shapedValue.getRank()
<< ") to match the result rank of indexing_map #" << idx << " ("
<< m.getNumResults() << ")";
}
SmallVector<AffineExpr, 4> redDims;
linalgOp.getReductionDims(redDims);
// Simplifying assumption: either full tensor or full buffer mode.
// This allows simpler verification of output operands vs result types
// without premature tracking of which operand is what in mixed-mode.
// TODO: relax when mixed-mode needs to pass verification.
if (linalgOp.getNumOutputBuffers() > 0 && linalgOp.getNumOutputTensors() > 0)
return op->emitError("expected output operands to all have tensor type or "
"all have buffer type");
for (auto it :
llvm::zip(linalgOp.getOutputOpOperands(), op->getResultTypes())) {
if (!std::get<0>(it).get().getType().isa<RankedTensorType>())
continue;
if (std::get<0>(it).get().getType() != std::get<1>(it))
return op->emitError("expected type of operand #")
<< std::get<0>(it).getOperandNumber() << " ("
<< std::get<0>(it).get().getType() << ")"
<< " to match type of corresponding result (" << std::get<1>(it)
<< ")";
}
// Output tensor indexing map may not depend on reduction indices.
for (OpOperand &opOperand : linalgOp.getOutputOpOperands()) {
AffineMap outputMap = linalgOp.getIndexingMap(opOperand.getOperandNumber());
for (auto expr : outputMap.getResults()) {
for (auto dim : redDims) {
unsigned pos = dim.cast<AffineDimExpr>().getPosition();
if (expr.isFunctionOfDim(pos)) {
std::string exprStr;
{
llvm::raw_string_ostream os(exprStr);
os << expr;
}
return op->emitError(
"unexpected output tensor expression in indexing map #")
<< (opOperand.getOperandNumber() - linalgOp.getNumInputs())
<< " a.k.a '" << exprStr
<< "' is function of reduction iterator 'd" << pos << "'";
}
}
}
}
// Named ops that are defined manually have a region builder but no region at
// this time. Assume the region is well-formed by specification.
// TODO: use linalg-ods-gen for all ops when we have enough expressive power.
if (linalgOp->getNumRegions() == 0) {
assert(!linalgOp.getRegionBuilder() && "regionBuilder but no region");
return success();
}
auto &region = linalgOp->getRegion(0);
if (linalgOp->getNumRegions() > 1 || !llvm::hasSingleElement(region))
return op->emitOpError("expected 1 region with 1 block");
if (!linalgOp.getShapesToLoopsMap())
return op->emitOpError("expected the shape-to-loops map to be non-null");
// Simplifying assumption: bbargs match 1-1 with shape operands elemental
// types.
// TODO: once ranked shape types are plugged in, we may want to drop the
// corresponding bbargs, that can never be read from. This will be subject to
// consistency discussions (i.e. what to do with output tensors whose bbarg is
// not used).
Block &block = linalgOp->getRegion(0).front();
unsigned numBBIvs = linalgOp.getNumPayloadInductionVariables();
if (linalgOp.getNumShapedOperands() + numBBIvs != block.getNumArguments())
return op->emitError("expected as many non-induction variable region "
"arguments as the number of shaped operands");
// Note: the number and type of yield values are checked in the YieldOp.
for (unsigned i = 0; i < numBBIvs; ++i)
if (!block.getArgument(i).getType().isIndex())
return op->emitOpError("expected index block argument #") << i;
unsigned idx = 0;
for (auto it : llvm::zip(linalgOp.getShapedOperandTypes(),
block.getArguments().drop_front(numBBIvs))) {
if (std::get<0>(it).getElementType() != std::get<1>(it).getType())
return op->emitError("expected type of bb argument #")
<< (idx + numBBIvs) << " (" << std::get<1>(it).getType() << ")"
<< " to match element type of corresponding shaped operand ("
<< std::get<0>(it).getElementType() << ")";
++idx;
}
return success();
}
namespace {
template <typename GenericOpType>
@ -1901,8 +1622,6 @@ struct EraseDeadLinalgOp;
struct FoldTensorCastOp;
} // namespace
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOpsInterfaces.cpp.inc"
#include "mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.cpp.inc"
#define GET_OP_CLASSES

View File

@ -1863,12 +1863,14 @@ void TCParser::printODS(llvm::raw_ostream &os, StringRef cppOpName,
let hasFolder = 1;
let hasCanonicalizer = 1;
let extraClassDeclaration = [{{
let extraClassDeclaration = structuredOpsBaseDecls # [{{
// Auto-generated.
ArrayAttr iterator_types();
ArrayAttr indexing_maps();
static void regionBuilder(Block &block);
static std::function<void(Block &)> getRegionBuilder() {{ return regionBuilder; }
static std::function<void(Block &)> getRegionBuilder() {{
return regionBuilder;
}
// Generic methods.
static unsigned getNumRegionArgs() {{ return {4}; }