[AST] Change return type of getTypeInfoInChars to a proper struct instead of std::pair.

Followup to D85191.

This changes getTypeInfoInChars to return a TypeInfoChars
struct instead of a std::pair of CharUnits. This lets the
interface match getTypeInfo more closely.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D86447
This commit is contained in:
Bevin Hansson 2020-08-24 10:19:29 +02:00
parent 9fa7f48459
commit 101309fe04
14 changed files with 112 additions and 109 deletions

View File

@ -171,6 +171,16 @@ struct TypeInfo {
: Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
};
struct TypeInfoChars {
CharUnits Width;
CharUnits Align;
bool AlignIsRequired : 1;
TypeInfoChars() : AlignIsRequired(false) {}
TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
: Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
};
/// Holds long-lived AST nodes (such as types and decls) that can be
/// referred to throughout the semantic analysis of a file.
class ASTContext : public RefCountedBase<ASTContext> {
@ -2169,10 +2179,10 @@ public:
// getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
// type is a record, its data size is returned.
std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
TypeInfoChars getTypeInfoInChars(const Type *T) const;
TypeInfoChars getTypeInfoInChars(QualType T) const;
/// Determine if the alignment the type has was required using an
/// alignment attribute.

View File

@ -1777,9 +1777,8 @@ CharUnits ASTContext::getExnObjectAlignment() const {
// chars. If the type is a record, its data size is returned. This is
// the size of the memcpy that's performed when assigning this type
// using a trivial copy/move assignment operator.
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
TypeInfoChars Info = getTypeInfoInChars(T);
// In C++, objects can sometimes be allocated into the tail padding
// of a base-class subobject. We decide whether that's possible
@ -1787,44 +1786,43 @@ ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
if (getLangOpts().CPlusPlus) {
if (const auto *RT = T->getAs<RecordType>()) {
const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
sizeAndAlign.first = layout.getDataSize();
Info.Width = layout.getDataSize();
}
}
return sizeAndAlign;
return Info;
}
/// getConstantArrayInfoInChars - Performing the computation in CharUnits
/// instead of in bits prevents overflowing the uint64_t for some large arrays.
std::pair<CharUnits, CharUnits>
TypeInfoChars
static getConstantArrayInfoInChars(const ASTContext &Context,
const ConstantArrayType *CAT) {
std::pair<CharUnits, CharUnits> EltInfo =
Context.getTypeInfoInChars(CAT->getElementType());
TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
uint64_t Size = CAT->getSize().getZExtValue();
assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
(uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation");
uint64_t Width = EltInfo.first.getQuantity() * Size;
unsigned Align = EltInfo.second.getQuantity();
uint64_t Width = EltInfo.Width.getQuantity() * Size;
unsigned Align = EltInfo.Align.getQuantity();
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
Context.getTargetInfo().getPointerWidth(0) == 64)
Width = llvm::alignTo(Width, Align);
return std::make_pair(CharUnits::fromQuantity(Width),
CharUnits::fromQuantity(Align));
return TypeInfoChars(CharUnits::fromQuantity(Width),
CharUnits::fromQuantity(Align),
EltInfo.AlignIsRequired);
}
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(const Type *T) const {
TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
return getConstantArrayInfoInChars(*this, CAT);
TypeInfo Info = getTypeInfo(T);
return std::make_pair(toCharUnitsFromBits(Info.Width),
toCharUnitsFromBits(Info.Align));
return TypeInfoChars(toCharUnitsFromBits(Info.Width),
toCharUnitsFromBits(Info.Align),
Info.AlignIsRequired);
}
std::pair<CharUnits, CharUnits>
ASTContext::getTypeInfoInChars(QualType T) const {
TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
return getTypeInfoInChars(T.getTypePtr());
}
@ -2375,10 +2373,10 @@ int64_t ASTContext::toBits(CharUnits CharSize) const {
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
return getTypeInfoInChars(T).first;
return getTypeInfoInChars(T).Width;
}
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
return getTypeInfoInChars(T).first;
return getTypeInfoInChars(T).Width;
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in

View File

@ -1841,12 +1841,12 @@ void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
auto setDeclInfo = [&](bool IsIncompleteArrayType) {
auto TI = Context.getTypeInfoInChars(D->getType());
FieldAlign = TI.second;
FieldAlign = TI.Align;
// Flexible array members don't have any size, but they have to be
// aligned appropriately for their element type.
EffectiveFieldSize = FieldSize =
IsIncompleteArrayType ? CharUnits::Zero() : TI.first;
AlignIsRequired = Context.getTypeInfo(D->getType()).AlignIsRequired;
IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
AlignIsRequired = TI.AlignIsRequired;
};
if (D->getType()->isIncompleteArrayType()) {
@ -2572,9 +2572,9 @@ MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
const FieldDecl *FD) {
// Get the alignment of the field type's natural alignment, ignore any
// alignment attributes.
ElementInfo Info;
std::tie(Info.Size, Info.Alignment) =
auto TInfo =
Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
ElementInfo Info{TInfo.Width, TInfo.Align};
// Respect align attributes on the field.
CharUnits FieldRequiredAlignment =
Context.toCharUnitsFromBits(FD->getMaxAlignment());

View File

@ -806,13 +806,12 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
return RValue::get(nullptr);
}
CharUnits sizeChars, alignChars;
std::tie(sizeChars, alignChars) = getContext().getTypeInfoInChars(AtomicTy);
uint64_t Size = sizeChars.getQuantity();
auto TInfo = getContext().getTypeInfoInChars(AtomicTy);
uint64_t Size = TInfo.Width.getQuantity();
unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth();
bool Oversized = getContext().toBits(sizeChars) > MaxInlineWidthInBits;
bool Misaligned = (Ptr.getAlignment() % sizeChars) != 0;
bool Oversized = getContext().toBits(TInfo.Width) > MaxInlineWidthInBits;
bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0;
bool UseLibcall = Misaligned | Oversized;
CharUnits MaxInlineWidth =
getContext().toCharUnitsFromBits(MaxInlineWidthInBits);
@ -821,13 +820,13 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
if (Misaligned) {
Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned)
<< (int)sizeChars.getQuantity()
<< (int)TInfo.Width.getQuantity()
<< (int)Ptr.getAlignment().getQuantity();
}
if (Oversized) {
Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized)
<< (int)sizeChars.getQuantity() << (int)MaxInlineWidth.getQuantity();
<< (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity();
}
llvm::Value *Order = EmitScalarExpr(E->getOrder());
@ -1080,7 +1079,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
EmitCastToVoidPtr(Val1.getPointer()), E->getVal1()->getType())),
getContext().VoidPtrTy);
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
Args.add(RValue::get(Order), getContext().IntTy);
Order = OrderFail;
break;
@ -1093,7 +1092,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_exchange:
LibCallName = "__atomic_exchange";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
// void __atomic_store(size_t size, void *mem, void *val, int order)
// void __atomic_store_N(T *mem, T val, int order)
@ -1105,7 +1104,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
RetTy = getContext().VoidTy;
HaveRetTy = true;
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
// void __atomic_load(size_t size, void *mem, void *return, int order)
// T __atomic_load_N(T *mem, int order)
@ -1125,7 +1124,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_add:
LibCallName = "__atomic_fetch_add";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
LoweredMemTy, E->getExprLoc(), sizeChars);
LoweredMemTy, E->getExprLoc(), TInfo.Width);
break;
// T __atomic_and_fetch_N(T *mem, T val, int order)
// T __atomic_fetch_and_N(T *mem, T val, int order)
@ -1137,7 +1136,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_and:
LibCallName = "__atomic_fetch_and";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
// T __atomic_or_fetch_N(T *mem, T val, int order)
// T __atomic_fetch_or_N(T *mem, T val, int order)
@ -1149,7 +1148,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_or:
LibCallName = "__atomic_fetch_or";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
// T __atomic_sub_fetch_N(T *mem, T val, int order)
// T __atomic_fetch_sub_N(T *mem, T val, int order)
@ -1161,7 +1160,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_sub:
LibCallName = "__atomic_fetch_sub";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
LoweredMemTy, E->getExprLoc(), sizeChars);
LoweredMemTy, E->getExprLoc(), TInfo.Width);
break;
// T __atomic_xor_fetch_N(T *mem, T val, int order)
// T __atomic_fetch_xor_N(T *mem, T val, int order)
@ -1173,7 +1172,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_xor:
LibCallName = "__atomic_fetch_xor";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
case AtomicExpr::AO__atomic_min_fetch:
PostOpMinMax = true;
@ -1185,7 +1184,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
? "__atomic_fetch_min"
: "__atomic_fetch_umin";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
LoweredMemTy, E->getExprLoc(), sizeChars);
LoweredMemTy, E->getExprLoc(), TInfo.Width);
break;
case AtomicExpr::AO__atomic_max_fetch:
PostOpMinMax = true;
@ -1197,7 +1196,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
? "__atomic_fetch_max"
: "__atomic_fetch_umax";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
LoweredMemTy, E->getExprLoc(), sizeChars);
LoweredMemTy, E->getExprLoc(), TInfo.Width);
break;
// T __atomic_nand_fetch_N(T *mem, T val, int order)
// T __atomic_fetch_nand_N(T *mem, T val, int order)
@ -1207,7 +1206,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
case AtomicExpr::AO__atomic_fetch_nand:
LibCallName = "__atomic_fetch_nand";
AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(),
MemTy, E->getExprLoc(), sizeChars);
MemTy, E->getExprLoc(), TInfo.Width);
break;
}
@ -1225,7 +1224,7 @@ RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) {
// Value is returned directly.
// The function returns an appropriately sized integer type.
RetTy = getContext().getIntTypeForBitwidth(
getContext().toBits(sizeChars), /*Signed=*/false);
getContext().toBits(TInfo.Width), /*Signed=*/false);
} else {
// Value is returned through parameter before the order.
RetTy = getContext().VoidTy;

View File

@ -557,11 +557,10 @@ static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF,
// Theoretically, this could be in a different address space, so
// don't assume standard pointer size/align.
llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType);
std::pair<CharUnits,CharUnits> tinfo
= CGM.getContext().getTypeInfoInChars(thisType);
maxFieldAlign = std::max(maxFieldAlign, tinfo.second);
auto TInfo = CGM.getContext().getTypeInfoInChars(thisType);
maxFieldAlign = std::max(maxFieldAlign, TInfo.Align);
layout.push_back(BlockLayoutChunk(tinfo.second, tinfo.first,
layout.push_back(BlockLayoutChunk(TInfo.Align, TInfo.Width,
Qualifiers::OCL_None,
nullptr, llvmType, thisType));
}

View File

@ -354,14 +354,12 @@ void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("setup.end");
CharUnits Offset = CharUnits::Zero();
for (const VarDecl *A : Args) {
CharUnits TyWidth, TyAlign;
std::tie(TyWidth, TyAlign) =
CGM.getContext().getTypeInfoInChars(A->getType());
Offset = Offset.alignTo(TyAlign);
auto TInfo = CGM.getContext().getTypeInfoInChars(A->getType());
Offset = Offset.alignTo(TInfo.Align);
llvm::Value *Args[] = {
CGF.Builder.CreatePointerCast(CGF.GetAddrOfLocalVar(A).getPointer(),
VoidPtrTy),
llvm::ConstantInt::get(SizeTy, TyWidth.getQuantity()),
llvm::ConstantInt::get(SizeTy, TInfo.Width.getQuantity()),
llvm::ConstantInt::get(SizeTy, Offset.getQuantity()),
};
llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(cudaSetupArgFn, Args);
@ -370,7 +368,7 @@ void CGNVCUDARuntime::emitDeviceStubBodyLegacy(CodeGenFunction &CGF,
llvm::BasicBlock *NextBlock = CGF.createBasicBlock("setup.next");
CGF.Builder.CreateCondBr(CBZero, NextBlock, EndBlock);
CGF.EmitBlock(NextBlock);
Offset += TyWidth;
Offset += TInfo.Width;
}
// Emit the call to cudaLaunch

View File

@ -2285,8 +2285,8 @@ void CodeGenModule::ConstructAttributeList(
auto PTy = ParamType->getPointeeType();
if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
auto info = getContext().getTypeInfoInChars(PTy);
Attrs.addDereferenceableAttr(info.first.getQuantity());
Attrs.addAlignmentAttr(info.second.getAsAlign());
Attrs.addDereferenceableAttr(info.Width.getQuantity());
Attrs.addAlignmentAttr(info.Align.getAsAlign());
}
break;
}

View File

@ -798,9 +798,8 @@ void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
size_t NumFields = 0;
for (const auto *Field : ClassDecl->fields()) {
const FieldDecl *D = Field;
std::pair<CharUnits, CharUnits> FieldInfo =
Context.getTypeInfoInChars(D->getType());
CharUnits FieldSize = FieldInfo.first;
auto FieldInfo = Context.getTypeInfoInChars(D->getType());
CharUnits FieldSize = FieldInfo.Width;
assert(NumFields < SSV.size());
SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
NumFields++;
@ -947,7 +946,7 @@ namespace {
LastField->isBitField()
? LastField->getBitWidthValue(Ctx)
: Ctx.toBits(
Ctx.getTypeInfoDataSizeInChars(LastField->getType()).first);
Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
FirstByteOffset + Ctx.getCharWidth() - 1;
CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);

View File

@ -1976,28 +1976,28 @@ void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
// Get data size info for this aggregate. Don't copy the tail padding if this
// might be a potentially-overlapping subobject, since the tail padding might
// be occupied by a different object. Otherwise, copying it is fine.
std::pair<CharUnits, CharUnits> TypeInfo;
TypeInfoChars TypeInfo;
if (MayOverlap)
TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
else
TypeInfo = getContext().getTypeInfoInChars(Ty);
llvm::Value *SizeVal = nullptr;
if (TypeInfo.first.isZero()) {
if (TypeInfo.Width.isZero()) {
// But note that getTypeInfo returns 0 for a VLA.
if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
getContext().getAsArrayType(Ty))) {
QualType BaseEltTy;
SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
assert(!TypeInfo.first.isZero());
assert(!TypeInfo.Width.isZero());
SizeVal = Builder.CreateNUWMul(
SizeVal,
llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()));
}
}
if (!SizeVal) {
SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity());
}
// FIXME: If we have a volatile struct, the optimizer can remove what might

View File

@ -919,8 +919,9 @@ PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
// Evaluate the ivar's size and alignment.
ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
QualType ivarType = ivar->getType();
std::tie(IvarSize, IvarAlignment) =
CGM.getContext().getTypeInfoInChars(ivarType);
auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType);
IvarSize = TInfo.Width;
IvarAlignment = TInfo.Align;
// If we have a copy property, we always have to use getProperty/setProperty.
// TODO: we could actually use setProperty and an expression for non-atomics.

View File

@ -742,7 +742,7 @@ void CGRecordLowering::clipTailPadding() {
assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
"should not have reused this field's tail padding");
Prior->Data = getByteArrayType(
Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width);
}
}
if (Member->Data)

View File

@ -653,7 +653,7 @@ public:
/// is the type size unless that might overlap another object, in which
/// case it's the dsize.
CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).first
return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
: Ctx.getTypeSizeInChars(Type);
}
};

View File

@ -359,7 +359,7 @@ static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
/// leaving one or more empty slots behind as padding.
static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType ValueTy, bool IsIndirect,
std::pair<CharUnits, CharUnits> ValueInfo,
TypeInfoChars ValueInfo,
CharUnits SlotSizeAndAlign,
bool AllowHigherAlign) {
// The size and alignment of the value that was passed directly.
@ -368,8 +368,8 @@ static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
DirectSize = CGF.getPointerSize();
DirectAlign = CGF.getPointerAlign();
} else {
DirectSize = ValueInfo.first;
DirectAlign = ValueInfo.second;
DirectSize = ValueInfo.Width;
DirectAlign = ValueInfo.Align;
}
// Cast the address we've calculated to the right type.
@ -383,7 +383,7 @@ static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
AllowHigherAlign);
if (IsIndirect) {
Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
}
return Addr;
@ -656,7 +656,7 @@ Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
"Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
CharUnits TyAlignForABI = TyInfo.second;
CharUnits TyAlignForABI = TyInfo.Align;
llvm::Type *BaseTy =
llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
@ -2062,8 +2062,8 @@ Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
//
// Just messing with TypeInfo like this works because we never pass
// anything indirectly.
TypeInfo.second = CharUnits::fromQuantity(
getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
TypeInfo.Align = CharUnits::fromQuantity(
getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
TypeInfo, CharUnits::fromQuantity(4),
@ -4067,10 +4067,9 @@ Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
// Copy to a temporary if necessary to ensure the appropriate alignment.
std::pair<CharUnits, CharUnits> SizeAlign =
getContext().getTypeInfoInChars(Ty);
uint64_t TySize = SizeAlign.first.getQuantity();
CharUnits TyAlign = SizeAlign.second;
auto TInfo = getContext().getTypeInfoInChars(Ty);
uint64_t TySize = TInfo.Width.getQuantity();
CharUnits TyAlign = TInfo.Align;
// Copy into a temporary if the type is more aligned than the
// register save area.
@ -4573,7 +4572,7 @@ Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
llvm::report_fatal_error("vector type is not supported on AIX yet");
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
TypeInfo.second = getParamTypeAlignment(Ty);
TypeInfo.Align = getParamTypeAlignment(Ty);
CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
@ -4692,7 +4691,7 @@ Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
QualType Ty) const {
if (getTarget().getTriple().isOSDarwin()) {
auto TI = getContext().getTypeInfoInChars(Ty);
TI.second = getParamTypeAlignment(Ty);
TI.Align = getParamTypeAlignment(Ty);
CharUnits SlotSize = CharUnits::fromQuantity(4);
return emitVoidPtrVAArg(CGF, VAList, Ty,
@ -4802,7 +4801,7 @@ Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
CharUnits Size;
if (!isIndirect) {
auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
Size = TypeInfo.first.alignTo(OverflowAreaAlign);
Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
} else {
Size = CGF.getPointerSize();
}
@ -5365,7 +5364,7 @@ PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty) const {
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
TypeInfo.second = getParamTypeAlignment(Ty);
TypeInfo.Align = getParamTypeAlignment(Ty);
CharUnits SlotSize = CharUnits::fromQuantity(8);
@ -5376,7 +5375,7 @@ Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
// loads of the real and imaginary parts relative to the va_list pointer,
// and store them to a temporary structure.
if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
CharUnits EltSize = TypeInfo.first / 2;
CharUnits EltSize = TypeInfo.Width / 2;
if (EltSize < SlotSize) {
Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
SlotSize * 2, SlotSize,
@ -6008,13 +6007,13 @@ Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
Address Tmp = CGF.CreateTempAlloca(HFATy,
std::max(TyAlign, BaseTyInfo.second));
std::max(TyAlign, BaseTyInfo.Align));
// On big-endian platforms, the value will be right-aligned in its slot.
int Offset = 0;
if (CGF.CGM.getDataLayout().isBigEndian() &&
BaseTyInfo.first.getQuantity() < 16)
Offset = 16 - BaseTyInfo.first.getQuantity();
BaseTyInfo.Width.getQuantity() < 16)
Offset = 16 - BaseTyInfo.Width.getQuantity();
for (unsigned i = 0; i < NumMembers; ++i) {
CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
@ -6138,7 +6137,7 @@ Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
// Arguments bigger than 16 bytes which aren't homogeneous
// aggregates should be passed indirectly.
bool IsIndirect = false;
if (TyInfo.first.getQuantity() > 16) {
if (TyInfo.Width.getQuantity() > 16) {
const Type *Base = nullptr;
uint64_t Members = 0;
IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
@ -6900,7 +6899,7 @@ Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
TyAlignForABI = CharUnits::fromQuantity(4);
}
std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
SlotSize, /*AllowHigherAlign*/ true);
}
@ -7374,8 +7373,8 @@ Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
ArgTy = AI.getCoerceToType();
InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
IsVector = ArgTy->isVectorTy();
UnpaddedSize = TyInfo.first;
DirectAlign = TyInfo.second;
UnpaddedSize = TyInfo.Width;
DirectAlign = TyInfo.Align;
}
CharUnits PaddedSize = CharUnits::fromQuantity(8);
if (IsVector && UnpaddedSize > PaddedSize)
@ -7396,7 +7395,7 @@ Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
Address OverflowArgArea =
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
TyInfo.second);
TyInfo.Align);
Address MemAddr =
CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
@ -7493,7 +7492,7 @@ Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
if (IsIndirect)
ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
TyInfo.second);
TyInfo.Align);
return ResAddr;
}
@ -7990,8 +7989,8 @@ Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
// The alignment of things in the argument area is never larger than
// StackAlignInBytes.
TyInfo.second =
std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
TyInfo.Align =
std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
// MinABIStackAlignInBytes is the size of argument slots on the stack.
CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
@ -9454,7 +9453,7 @@ Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
case ABIArgInfo::Extend: {
Stride = SlotSize;
CharUnits Offset = SlotSize - TypeInfo.first;
CharUnits Offset = SlotSize - TypeInfo.Width;
ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
break;
}
@ -9471,11 +9470,11 @@ Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
Stride = SlotSize;
ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
TypeInfo.second);
TypeInfo.Align);
break;
case ABIArgInfo::Ignore:
return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
}
// Update VAList.
@ -10771,13 +10770,12 @@ Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
return Addr;
}
std::pair<CharUnits, CharUnits> SizeAndAlign =
getContext().getTypeInfoInChars(Ty);
auto TInfo = getContext().getTypeInfoInChars(Ty);
// Arguments bigger than 2*Xlen bytes are passed indirectly.
bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
bool IsIndirect = TInfo.Width > 2 * SlotSize;
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
SlotSize, /*AllowHigherAlign=*/true);
}

View File

@ -248,8 +248,9 @@ public:
FieldInfo RetVal;
RetVal.Field = FD;
auto &Ctx = FD->getASTContext();
std::tie(RetVal.Size, RetVal.Align) =
Ctx.getTypeInfoInChars(FD->getType());
auto Info = Ctx.getTypeInfoInChars(FD->getType());
RetVal.Size = Info.Width;
RetVal.Align = Info.Align;
assert(llvm::isPowerOf2_64(RetVal.Align.getQuantity()));
if (auto Max = FD->getMaxAlignment())
RetVal.Align = std::max(Ctx.toCharUnitsFromBits(Max), RetVal.Align);