[cuda] Driver changes to compile and stitch together host and device-side CUDA code.

NOTE: reverts r242077 to reinstate r242058, r242065, 242067
        and includes fix for OS X test failures.

  - Changed driver pipeline to compile host and device side of CUDA
    files and incorporate results of device-side compilation into host
    object file.

  - Added a test for cuda pipeline creation in clang driver.

  New clang options:
  --cuda-host-only   - Do host-side compilation only.
  --cuda-device-only - Do device-side compilation only.

  --cuda-gpu-arch=<ARCH> - specify GPU architecture for device-side
    compilation. E.g. sm_35, sm_30. Default is sm_20. May be used more
    than once in which case one device-compilation will be done per
    unique specified GPU architecture.

  Differential Revision: http://reviews.llvm.org/D9509

llvm-svn: 242085
This commit is contained in:
Artem Belevich 2015-07-13 23:27:56 +00:00
parent 2eacca86ef
commit 0ff05cd165
17 changed files with 516 additions and 28 deletions

View File

@ -41,6 +41,8 @@ public:
enum ActionClass {
InputClass = 0,
BindArchClass,
CudaDeviceClass,
CudaHostClass,
PreprocessJobClass,
PrecompileJobClass,
AnalyzeJobClass,
@ -133,6 +135,41 @@ public:
}
};
class CudaDeviceAction : public Action {
virtual void anchor();
/// GPU architecture to bind -- e.g 'sm_35'.
const char *GpuArchName;
/// True when action results are not consumed by the host action (e.g when
/// -fsyntax-only or --cuda-device-only options are used).
bool AtTopLevel;
public:
CudaDeviceAction(std::unique_ptr<Action> Input, const char *ArchName,
bool AtTopLevel);
const char *getGpuArchName() const { return GpuArchName; }
bool isAtTopLevel() const { return AtTopLevel; }
static bool classof(const Action *A) {
return A->getKind() == CudaDeviceClass;
}
};
class CudaHostAction : public Action {
virtual void anchor();
ActionList DeviceActions;
public:
CudaHostAction(std::unique_ptr<Action> Input,
const ActionList &DeviceActions);
~CudaHostAction() override;
ActionList &getDeviceActions() { return DeviceActions; }
const ActionList &getDeviceActions() const { return DeviceActions; }
static bool classof(const Action *A) { return A->getKind() == CudaHostClass; }
};
class JobAction : public Action {
virtual void anchor();
protected:

View File

@ -351,6 +351,12 @@ def cxx_isystem : JoinedOrSeparate<["-"], "cxx-isystem">, Group<clang_i_Group>,
MetaVarName<"<directory>">;
def c : Flag<["-"], "c">, Flags<[DriverOption]>,
HelpText<"Only run preprocess, compile, and assemble steps">;
def cuda_device_only : Flag<["--"], "cuda-device-only">,
HelpText<"Do device-side CUDA compilation only">;
def cuda_gpu_arch_EQ : Joined<["--"], "cuda-gpu-arch=">,
Flags<[DriverOption, HelpHidden]>, HelpText<"CUDA GPU architecture">;
def cuda_host_only : Flag<["--"], "cuda-host-only">,
HelpText<"Do host-side CUDA compilation only">;
def dA : Flag<["-"], "dA">, Group<d_Group>;
def dD : Flag<["-"], "dD">, Group<d_Group>, Flags<[CC1Option]>,
HelpText<"Print macro definitions in -E mode in addition to normal output">;

View File

@ -44,6 +44,7 @@ TYPE("c", C, PP_C, "c", "u")
TYPE("cl", CL, PP_C, "cl", "u")
TYPE("cuda-cpp-output", PP_CUDA, INVALID, "cui", "u")
TYPE("cuda", CUDA, PP_CUDA, "cu", "u")
TYPE("cuda", CUDA_DEVICE, PP_CUDA, "cu", "")
TYPE("objective-c-cpp-output", PP_ObjC, INVALID, "mi", "u")
TYPE("objc-cpp-output", PP_ObjC_Alias, INVALID, "mi", "u")
TYPE("objective-c", ObjC, PP_ObjC, "m", "u")

View File

@ -63,6 +63,9 @@ namespace types {
/// isCXX - Is this a "C++" input (C++ and Obj-C++ sources and headers).
bool isCXX(ID Id);
/// isCuda - Is this a CUDA input.
bool isCuda(ID Id);
/// isObjC - Is this an "ObjC" input (Obj-C and Obj-C++ sources and headers).
bool isObjC(ID Id);

View File

@ -24,6 +24,8 @@ const char *Action::getClassName(ActionClass AC) {
switch (AC) {
case InputClass: return "input";
case BindArchClass: return "bind-arch";
case CudaDeviceClass: return "cuda-device";
case CudaHostClass: return "cuda-host";
case PreprocessJobClass: return "preprocessor";
case PrecompileJobClass: return "precompiler";
case AnalyzeJobClass: return "analyzer";
@ -53,6 +55,25 @@ BindArchAction::BindArchAction(std::unique_ptr<Action> Input,
const char *_ArchName)
: Action(BindArchClass, std::move(Input)), ArchName(_ArchName) {}
void CudaDeviceAction::anchor() {}
CudaDeviceAction::CudaDeviceAction(std::unique_ptr<Action> Input,
const char *ArchName, bool AtTopLevel)
: Action(CudaDeviceClass, std::move(Input)), GpuArchName(ArchName),
AtTopLevel(AtTopLevel) {}
void CudaHostAction::anchor() {}
CudaHostAction::CudaHostAction(std::unique_ptr<Action> Input,
const ActionList &_DeviceActions)
: Action(CudaHostClass, std::move(Input)), DeviceActions(_DeviceActions) {}
CudaHostAction::~CudaHostAction() {
for (iterator it = DeviceActions.begin(), ie = DeviceActions.end(); it != ie;
++it)
delete *it;
}
void JobAction::anchor() {}
JobAction::JobAction(ActionClass Kind, std::unique_ptr<Action> Input,

View File

@ -174,8 +174,10 @@ phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
FinalPhase = phases::Backend;
// -c only runs up to the assembler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
// -c and partial CUDA compilations only run up to the assembler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c)) ||
(PhaseArg = DAL.getLastArg(options::OPT_cuda_device_only)) ||
(PhaseArg = DAL.getLastArg(options::OPT_cuda_host_only))) {
FinalPhase = phases::Assemble;
// Otherwise do everything.
@ -900,9 +902,20 @@ static unsigned PrintActions1(const Compilation &C, Action *A,
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << BIA->getArchName() << '"' << ", {"
<< PrintActions1(C, *BIA->begin(), Ids) << "}";
} else if (CudaDeviceAction *CDA = dyn_cast<CudaDeviceAction>(A)) {
os << '"' << CDA->getGpuArchName() << '"' << ", {"
<< PrintActions1(C, *CDA->begin(), Ids) << "}";
} else {
ActionList *AL;
if (CudaHostAction *CHA = dyn_cast<CudaHostAction>(A)) {
os << "{" << PrintActions1(C, *CHA->begin(), Ids) << "}"
<< ", gpu binaries ";
AL = &CHA->getDeviceActions();
} else
AL = &A->getInputs();
const char *Prefix = "{";
for (Action *PreRequisite : *A) {
for (Action *PreRequisite : *AL) {
os << Prefix << PrintActions1(C, PreRequisite, Ids);
Prefix = ", ";
}
@ -1215,6 +1228,93 @@ void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
}
}
// For each unique --cuda-gpu-arch= argument creates a TY_CUDA_DEVICE input
// action and then wraps each in CudaDeviceAction paired with appropriate GPU
// arch name. If we're only building device-side code, each action remains
// independent. Otherwise we pass device-side actions as inputs to a new
// CudaHostAction which combines both host and device side actions.
static std::unique_ptr<Action>
buildCudaActions(const Driver &D, const ToolChain &TC, DerivedArgList &Args,
const Arg *InputArg, const types::ID InputType,
std::unique_ptr<Action> Current, ActionList &Actions) {
assert(InputType == types::TY_CUDA &&
"CUDA Actions only apply to CUDA inputs.");
// Collect all cuda_gpu_arch parameters, removing duplicates.
SmallVector<const char *, 4> GpuArchList;
llvm::StringSet<> GpuArchNames;
for (Arg *A : Args) {
if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) {
A->claim();
if (GpuArchNames.insert(A->getValue()).second)
GpuArchList.push_back(A->getValue());
}
}
// Default to sm_20 which is the lowest common denominator for supported GPUs.
// sm_20 code should work correctly, if suboptimally, on all newer GPUs.
if (GpuArchList.empty())
GpuArchList.push_back("sm_20");
// Replicate inputs for each GPU architecture.
Driver::InputList CudaDeviceInputs;
for (unsigned i = 0, e = GpuArchList.size(); i != e; ++i)
CudaDeviceInputs.push_back(std::make_pair(types::TY_CUDA_DEVICE, InputArg));
// Build actions for all device inputs.
ActionList CudaDeviceActions;
D.BuildActions(TC, Args, CudaDeviceInputs, CudaDeviceActions);
assert(GpuArchList.size() == CudaDeviceActions.size() &&
"Failed to create actions for all devices");
// Check whether any of device actions stopped before they could generate PTX.
bool PartialCompilation = false;
bool DeviceOnlyCompilation = Args.hasArg(options::OPT_cuda_device_only);
for (unsigned i = 0, e = GpuArchList.size(); i != e; ++i) {
if (CudaDeviceActions[i]->getKind() != Action::BackendJobClass) {
PartialCompilation = true;
break;
}
}
// Figure out what to do with device actions -- pass them as inputs to the
// host action or run each of them independently.
if (PartialCompilation || DeviceOnlyCompilation) {
// In case of partial or device-only compilation results of device actions
// are not consumed by the host action device actions have to be added to
// top-level actions list with AtTopLevel=true and run independently.
// -o is ambiguous if we have more than one top-level action.
if (Args.hasArg(options::OPT_o) &&
(!DeviceOnlyCompilation || GpuArchList.size() > 1)) {
D.Diag(clang::diag::err_drv_output_argument_with_multiple_files);
return nullptr;
}
for (unsigned i = 0, e = GpuArchList.size(); i != e; ++i)
Actions.push_back(
new CudaDeviceAction(std::unique_ptr<Action>(CudaDeviceActions[i]),
GpuArchList[i], /* AtTopLevel */ true));
// Kill host action in case of device-only compilation.
if (DeviceOnlyCompilation)
Current.reset(nullptr);
return Current;
} else {
// Outputs of device actions during complete CUDA compilation get created
// with AtTopLevel=false and become inputs for the host action.
ActionList DeviceActions;
for (unsigned i = 0, e = GpuArchList.size(); i != e; ++i)
DeviceActions.push_back(
new CudaDeviceAction(std::unique_ptr<Action>(CudaDeviceActions[i]),
GpuArchList[i], /* AtTopLevel */ false));
// Return a new host action that incorporates original host action and all
// device actions.
return std::unique_ptr<Action>(
new CudaHostAction(std::move(Current), DeviceActions));
}
}
void Driver::BuildActions(const ToolChain &TC, DerivedArgList &Args,
const InputList &Inputs, ActionList &Actions) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
@ -1312,6 +1412,25 @@ void Driver::BuildActions(const ToolChain &TC, DerivedArgList &Args,
continue;
}
phases::ID CudaInjectionPhase;
if (isSaveTempsEnabled()) {
// All phases are done independently, inject GPU blobs during compilation
// phase as that's where we generate glue code to init them.
CudaInjectionPhase = phases::Compile;
} else {
// Assumes that clang does everything up until linking phase, so we inject
// cuda device actions at the last step before linking. Otherwise CUDA
// host action forces preprocessor into a separate invocation.
if (FinalPhase == phases::Link) {
for (auto i = PL.begin(), e = PL.end(); i != e; ++i) {
auto next = i + 1;
if (next != e && *next == phases::Link)
CudaInjectionPhase = *i;
}
} else
CudaInjectionPhase = FinalPhase;
}
// Build the pipeline for this file.
std::unique_ptr<Action> Current(new InputAction(*InputArg, InputType));
for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
@ -1337,6 +1456,15 @@ void Driver::BuildActions(const ToolChain &TC, DerivedArgList &Args,
// Otherwise construct the appropriate action.
Current = ConstructPhaseAction(TC, Args, Phase, std::move(Current));
if (InputType == types::TY_CUDA && Phase == CudaInjectionPhase &&
!Args.hasArg(options::OPT_cuda_host_only)) {
Current = buildCudaActions(*this, TC, Args, InputArg, InputType,
std::move(Current), Actions);
if (!Current)
break;
}
if (Current->getType() == types::TY_Nothing)
break;
}
@ -1576,7 +1704,13 @@ static const Tool *SelectToolForJob(Compilation &C, bool SaveTemps,
if (isa<BackendJobAction>(JA)) {
// Check if the compiler supports emitting LLVM IR.
assert(Inputs->size() == 1);
JobAction *CompileJA = cast<CompileJobAction>(*Inputs->begin());
JobAction *CompileJA;
// Extract real host action, if it's a CudaHostAction.
if (CudaHostAction *CudaHA = dyn_cast<CudaHostAction>(*Inputs->begin()))
CompileJA = cast<CompileJobAction>(*CudaHA->begin());
else
CompileJA = cast<CompileJobAction>(*Inputs->begin());
const Tool *Compiler = TC->SelectTool(*CompileJA);
if (!Compiler)
return nullptr;
@ -1610,6 +1744,20 @@ void Driver::BuildJobsForAction(Compilation &C, const Action *A,
InputInfo &Result) const {
llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
InputInfoList CudaDeviceInputInfos;
if (const CudaHostAction *CHA = dyn_cast<CudaHostAction>(A)) {
InputInfo II;
// Append outputs of device jobs to the input list.
for (const Action *DA : CHA->getDeviceActions()) {
BuildJobsForAction(C, DA, TC, "", AtTopLevel,
/*MultipleArchs*/ false, LinkingOutput, II);
CudaDeviceInputInfos.push_back(II);
}
// Override current action with a real host compile action and continue
// processing it.
A = *CHA->begin();
}
if (const InputAction *IA = dyn_cast<InputAction>(A)) {
// FIXME: It would be nice to not claim this here; maybe the old scheme of
// just using Args was better?
@ -1635,11 +1783,24 @@ void Driver::BuildJobsForAction(Compilation &C, const Action *A,
else
TC = &C.getDefaultToolChain();
BuildJobsForAction(C, *BAA->begin(), TC, BAA->getArchName(), AtTopLevel,
BuildJobsForAction(C, *BAA->begin(), TC, ArchName, AtTopLevel,
MultipleArchs, LinkingOutput, Result);
return;
}
if (const CudaDeviceAction *CDA = dyn_cast<CudaDeviceAction>(A)) {
// Figure out which NVPTX triple to use for device-side compilation based on
// whether host is 64-bit.
llvm::Triple DeviceTriple(C.getDefaultToolChain().getTriple().isArch64Bit()
? "nvptx64-nvidia-cuda"
: "nvptx-nvidia-cuda");
BuildJobsForAction(C, *CDA->begin(),
&getToolChain(C.getArgs(), DeviceTriple),
CDA->getGpuArchName(), CDA->isAtTopLevel(),
/*MultipleArchs*/ true, LinkingOutput, Result);
return;
}
const ActionList *Inputs = &A->getInputs();
const JobAction *JA = cast<JobAction>(A);
@ -1671,6 +1832,10 @@ void Driver::BuildJobsForAction(Compilation &C, const Action *A,
if (JA->getType() == types::TY_dSYM)
BaseInput = InputInfos[0].getFilename();
// Append outputs of cuda device jobs to the input list
if (CudaDeviceInputInfos.size())
InputInfos.append(CudaDeviceInputInfos.begin(), CudaDeviceInputInfos.end());
// Determine the place to write output to, if any.
if (JA->getType() == types::TY_Nothing)
Result = InputInfo(A->getType(), BaseInput);
@ -2052,6 +2217,9 @@ const ToolChain &Driver::getToolChain(const ArgList &Args,
break;
}
break;
case llvm::Triple::CUDA:
TC = new toolchains::CudaToolChain(*this, Target, Args);
break;
default:
// Of these targets, Hexagon is the only one that might have
// an OS of Linux, in which case it got handled above already.

View File

@ -151,6 +151,8 @@ Tool *ToolChain::getTool(Action::ActionClass AC) const {
case Action::InputClass:
case Action::BindArchClass:
case Action::CudaDeviceClass:
case Action::CudaHostClass:
case Action::LipoJobClass:
case Action::DsymutilJobClass:
case Action::VerifyDebugInfoJobClass:

View File

@ -3652,6 +3652,65 @@ Tool *DragonFly::buildLinker() const {
return new tools::dragonfly::Linker(*this);
}
/// Stub for CUDA toolchain. At the moment we don't have assembler or
/// linker and need toolchain mainly to propagate device-side options
/// to CC1.
CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args)
: Linux(D, Triple, Args) {}
void
CudaToolChain::addClangTargetOptions(const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const {
Linux::addClangTargetOptions(DriverArgs, CC1Args);
CC1Args.push_back("-fcuda-is-device");
}
llvm::opt::DerivedArgList *
CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
const char *BoundArch) const {
DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs());
const OptTable &Opts = getDriver().getOpts();
for (Arg *A : Args) {
if (A->getOption().matches(options::OPT_Xarch__)) {
// Skip this argument unless the architecture matches BoundArch
if (A->getValue(0) != StringRef(BoundArch))
continue;
unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
unsigned Prev = Index;
std::unique_ptr<Arg> XarchArg(Opts.ParseOneArg(Args, Index));
// If the argument parsing failed or more than one argument was
// consumed, the -Xarch_ argument's parameter tried to consume
// extra arguments. Emit an error and ignore.
//
// We also want to disallow any options which would alter the
// driver behavior; that isn't going to work in our model. We
// use isDriverOption() as an approximation, although things
// like -O4 are going to slip through.
if (!XarchArg || Index > Prev + 1) {
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
<< A->getAsString(Args);
continue;
} else if (XarchArg->getOption().hasFlag(options::DriverOption)) {
getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver)
<< A->getAsString(Args);
continue;
}
XarchArg->setBaseArg(A);
A = XarchArg.release();
DAL->AddSynthesizedArg(A);
}
DAL->append(A);
}
DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch);
return DAL;
}
/// XCore tool chain
XCore::XCore(const Driver &D, const llvm::Triple &Triple, const ArgList &Args)
: ToolChain(D, Triple, Args) {

View File

@ -699,6 +699,18 @@ private:
std::string computeSysRoot() const;
};
class LLVM_LIBRARY_VISIBILITY CudaToolChain : public Linux {
public:
CudaToolChain(const Driver &D, const llvm::Triple &Triple,
const llvm::opt::ArgList &Args);
llvm::opt::DerivedArgList *
TranslateArgs(const llvm::opt::DerivedArgList &Args,
const char *BoundArch) const override;
void addClangTargetOptions(const llvm::opt::ArgList &DriverArgs,
llvm::opt::ArgStringList &CC1Args) const override;
};
class LLVM_LIBRARY_VISIBILITY Hexagon_TC : public Linux {
protected:
GCCVersion GCCLibAndIncVersion;

View File

@ -1488,6 +1488,12 @@ static std::string getCPUName(const ArgList &Args, const llvm::Triple &T) {
return CPUName;
}
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
if (const Arg *A = Args.getLastArg(options::OPT_march_EQ))
return A->getValue();
return "";
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le: {
@ -2826,8 +2832,14 @@ void Clang::ConstructJob(Compilation &C, const JobAction &JA,
getToolChain().getTriple().isWindowsCygwinEnvironment();
bool IsWindowsMSVC = getToolChain().getTriple().isWindowsMSVCEnvironment();
assert(Inputs.size() == 1 && "Unable to handle multiple inputs.");
// Check number of inputs for sanity. We need at least one input.
assert(Inputs.size() >= 1 && "Must have at least one input.");
const InputInfo &Input = Inputs[0];
// CUDA compilation may have multiple inputs (source file + results of
// device-side compilations). All other jobs are expected to have exactly one
// input.
bool IsCuda = types::isCuda(Input.getType());
assert((IsCuda || Inputs.size() == 1) && "Unable to handle multiple inputs.");
// Invoke ourselves in -cc1 mode.
//
@ -4812,14 +4824,12 @@ void Clang::ConstructJob(Compilation &C, const JobAction &JA,
assert(Output.isNothing() && "Invalid output.");
}
for (const auto &II : Inputs) {
addDashXForInput(Args, II, CmdArgs);
addDashXForInput(Args, Input, CmdArgs);
if (II.isFilename())
CmdArgs.push_back(II.getFilename());
else
II.getInputArg().renderAsInput(Args, CmdArgs);
}
if (Input.isFilename())
CmdArgs.push_back(Input.getFilename());
else
Input.getInputArg().renderAsInput(Args, CmdArgs);
Args.AddAllArgs(CmdArgs, options::OPT_undef);
@ -4857,6 +4867,16 @@ void Clang::ConstructJob(Compilation &C, const JobAction &JA,
CmdArgs.push_back(SplitDwarfOut);
}
// Host-side cuda compilation receives device-side outputs as Inputs[1...].
// Include them with -fcuda-include-gpubinary.
if (IsCuda && Inputs.size() > 1)
for (InputInfoList::const_iterator it = std::next(Inputs.begin()),
ie = Inputs.end();
it != ie; ++it) {
CmdArgs.push_back("-fcuda-include-gpubinary");
CmdArgs.push_back(it->getFilename());
}
// Finally add the compile command to the compilation.
if (Args.hasArg(options::OPT__SLASH_fallback) &&
Output.getType() == types::TY_Object &&

View File

@ -86,6 +86,7 @@ bool types::isAcceptedByClang(ID Id) {
case TY_C: case TY_PP_C:
case TY_CL:
case TY_CUDA: case TY_PP_CUDA:
case TY_CUDA_DEVICE:
case TY_ObjC: case TY_PP_ObjC: case TY_PP_ObjC_Alias:
case TY_CXX: case TY_PP_CXX:
case TY_ObjCXX: case TY_PP_ObjCXX: case TY_PP_ObjCXX_Alias:
@ -122,7 +123,19 @@ bool types::isCXX(ID Id) {
case TY_ObjCXX: case TY_PP_ObjCXX: case TY_PP_ObjCXX_Alias:
case TY_CXXHeader: case TY_PP_CXXHeader:
case TY_ObjCXXHeader: case TY_PP_ObjCXXHeader:
case TY_CUDA: case TY_PP_CUDA:
case TY_CUDA: case TY_PP_CUDA: case TY_CUDA_DEVICE:
return true;
}
}
bool types::isCuda(ID Id) {
switch (Id) {
default:
return false;
case TY_CUDA:
case TY_PP_CUDA:
case TY_CUDA_DEVICE:
return true;
}
}
@ -206,10 +219,12 @@ void types::getCompilationPhases(ID Id, llvm::SmallVectorImpl<phases::ID> &P) {
P.push_back(phases::Compile);
P.push_back(phases::Backend);
}
P.push_back(phases::Assemble);
if (Id != TY_CUDA_DEVICE)
P.push_back(phases::Assemble);
}
}
if (!onlyPrecompileType(Id)) {
if (!onlyPrecompileType(Id) && Id != TY_CUDA_DEVICE) {
P.push_back(phases::Link);
}
assert(0 < P.size() && "Not enough phases in list");

View File

@ -15,6 +15,7 @@
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
@ -61,9 +62,25 @@ clang::createInvocationFromCommandLine(ArrayRef<const char *> ArgList,
}
// We expect to get back exactly one command job, if we didn't something
// failed.
// failed. CUDA compilation is an exception as it creates multiple jobs. If
// that's the case, we proceed with the first job. If caller needs particular
// CUDA job, it should be controlled via --cuda-{host|device}-only option
// passed to the driver.
const driver::JobList &Jobs = C->getJobs();
if (Jobs.size() != 1 || !isa<driver::Command>(*Jobs.begin())) {
bool CudaCompilation = false;
if (Jobs.size() > 1) {
for (auto &A : C->getActions()){
// On MacOSX real actions may end up being wrapped in BindArchAction
if (isa<driver::BindArchAction>(A))
A = *A->begin();
if (isa<driver::CudaDeviceAction>(A)) {
CudaCompilation = true;
break;
}
}
}
if (Jobs.size() == 0 || !isa<driver::Command>(*Jobs.begin()) ||
(Jobs.size() > 1 && !CudaCompilation)) {
SmallString<256> Msg;
llvm::raw_svector_ostream OS(Msg);
Jobs.Print(OS, "; ", true);

View File

@ -0,0 +1,109 @@
// Tests CUDA compilation pipeline construction in Driver.
// REQUIRES: clang-driver
// Simple compilation case:
// RUN: %clang -### -c %s 2>&1 \
// Compile device-side to PTX assembly and make sure we use it on the host side.
// RUN: | FileCheck -check-prefix CUDA-D1 \
// Then compile host side and incorporate device code.
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-I1 \
// Make sure we don't link anything.
// RUN: -check-prefix CUDA-NL %s
// Typical compilation + link case:
// RUN: %clang -### %s 2>&1 \
// Compile device-side to PTX assembly and make sure we use it on the host side
// RUN: | FileCheck -check-prefix CUDA-D1 \
// Then compile host side and incorporate device code.
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-I1 \
// Then link things.
// RUN: -check-prefix CUDA-L %s
// Verify that -cuda-no-device disables device-side compilation and linking
// RUN: %clang -### --cuda-host-only %s 2>&1 \
// Make sure we didn't run device-side compilation.
// RUN: | FileCheck -check-prefix CUDA-ND \
// Then compile host side and make sure we don't attempt to incorporate GPU code.
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-NI \
// Make sure we don't link anything.
// RUN: -check-prefix CUDA-NL %s
// Verify that -cuda-no-host disables host-side compilation and linking
// RUN: %clang -### --cuda-device-only %s 2>&1 \
// Compile device-side to PTX assembly
// RUN: | FileCheck -check-prefix CUDA-D1 \
// Make sure there are no host cmpilation or linking.
// RUN: -check-prefix CUDA-NH -check-prefix CUDA-NL %s
// Verify that with -S we compile host and device sides to assembly
// and incorporate device code on the host side.
// RUN: %clang -### -S -c %s 2>&1 \
// Compile device-side to PTX assembly
// RUN: | FileCheck -check-prefix CUDA-D1 \
// Then compile host side and incorporate GPU code.
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-I1 \
// Make sure we don't link anything.
// RUN: -check-prefix CUDA-NL %s
// Verify that --cuda-gpu-arch option passes correct GPU
// archtecture info to device compilation.
// RUN: %clang -### --cuda-gpu-arch=sm_35 -c %s 2>&1 \
// Compile device-side to PTX assembly.
// RUN: | FileCheck -check-prefix CUDA-D1 -check-prefix CUDA-D1-SM35 \
// Then compile host side and incorporate GPU code.
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-I1 \
// Make sure we don't link anything.
// RUN: -check-prefix CUDA-NL %s
// Verify that there is device-side compilation per --cuda-gpu-arch args
// and that all results are included on the host side.
// RUN: %clang -### --cuda-gpu-arch=sm_35 --cuda-gpu-arch=sm_30 -c %s 2>&1 \
// Compile both device-sides to PTX assembly
// RUN: | FileCheck \
// RUN: -check-prefix CUDA-D1 -check-prefix CUDA-D1-SM35 \
// RUN: -check-prefix CUDA-D2 -check-prefix CUDA-D2-SM30 \
// Then compile host side and incorporate both device-side outputs
// RUN: -check-prefix CUDA-H -check-prefix CUDA-H-I1 -check-prefix CUDA-H-I2 \
// Make sure we don't link anything.
// RUN: -check-prefix CUDA-NL %s
// Match device-side compilation
// CUDA-D1: "-cc1" "-triple" "nvptx{{(64)?}}-nvidia-cuda"
// CUDA-D1-SAME: "-fcuda-is-device"
// CUDA-D1-SM35-SAME: "-target-cpu" "sm_35"
// CUDA-D1-SAME: "-o" "[[GPUBINARY1:[^"]*]]"
// CUDA-D1-SAME: "-x" "cuda"
// Match anothe device-side compilation
// CUDA-D2: "-cc1" "-triple" "nvptx{{(64)?}}-nvidia-cuda"
// CUDA-D2-SAME: "-fcuda-is-device"
// CUDA-D2-SM30-SAME: "-target-cpu" "sm_30"
// CUDA-D2-SAME: "-o" "[[GPUBINARY2:[^"]*]]"
// CUDA-D2-SAME: "-x" "cuda"
// Match no device-side compilation
// CUDA-ND-NOT: "-cc1" "-triple" "nvptx{{64?}}-nvidia-cuda"
// CUDA-ND-SAME-NOT: "-fcuda-is-device"
// Match host-side compilation
// CUDA-H: "-cc1" "-triple"
// CUDA-H-SAME-NOT: "nvptx{{64?}}-nvidia-cuda"
// CUDA-H-SAME-NOT: "-fcuda-is-device"
// CUDA-H-SAME: "-o" "[[HOSTOBJ:[^"]*]]"
// CUDA-H-SAME: "-x" "cuda"
// CUDA-H-I1-SAME: "-fcuda-include-gpubinary" "[[GPUBINARY1]]"
// CUDA-H-I2-SAME: "-fcuda-include-gpubinary" "[[GPUBINARY2]]"
// Match no GPU code inclusion.
// CUDA-H-NI-NOT: "-fcuda-include-gpubinary"
// Match no CUDA compilation
// CUDA-NH-NOT: "-cc1" "-triple"
// CUDA-NH-SAME-NOT: "-x" "cuda"
// Match linker
// CUDA-L: "{{.*}}ld{{(.exe)?}}"
// CUDA-L-SAME: "[[HOSTOBJ]]"
// Match no linker
// CUDA-NL-NOT: "{{.*}}ld{{(.exe)?}}"

View File

@ -1,4 +1,6 @@
// RUN: c-index-test -test-load-source all -x cuda %s | FileCheck %s
// RUN: c-index-test -test-load-source all -x cuda --cuda-host-only %s | FileCheck %s
// RUN: c-index-test -test-load-source all -x cuda --cuda-device-only %s | FileCheck %s
__attribute__((device)) void f_device();
__attribute__((global)) void f_global();
@ -6,13 +8,13 @@ __attribute__((constant)) int* g_constant;
__attribute__((shared)) float *g_shared;
__attribute__((host)) void f_host();
// CHECK: attributes-cuda.cu:3:30: FunctionDecl=f_device:3:30
// CHECK-NEXT: attributes-cuda.cu:3:16: attribute(device)
// CHECK: attributes-cuda.cu:4:30: FunctionDecl=f_global:4:30
// CHECK-NEXT: attributes-cuda.cu:4:16: attribute(global)
// CHECK: attributes-cuda.cu:5:32: VarDecl=g_constant:5:32 (Definition)
// CHECK-NEXT: attributes-cuda.cu:5:16: attribute(constant)
// CHECK: attributes-cuda.cu:6:32: VarDecl=g_shared:6:32 (Definition)
// CHECK-NEXT: attributes-cuda.cu:6:16: attribute(shared)
// CHECK: attributes-cuda.cu:7:28: FunctionDecl=f_host:7:28
// CHECK-NEXT: attributes-cuda.cu:7:16: attribute(host)
// CHECK: attributes-cuda.cu:5:30: FunctionDecl=f_device:5:30
// CHECK-NEXT: attributes-cuda.cu:5:16: attribute(device)
// CHECK: attributes-cuda.cu:6:30: FunctionDecl=f_global:6:30
// CHECK-NEXT: attributes-cuda.cu:6:16: attribute(global)
// CHECK: attributes-cuda.cu:7:32: VarDecl=g_constant:7:32 (Definition)
// CHECK-NEXT: attributes-cuda.cu:7:16: attribute(constant)
// CHECK: attributes-cuda.cu:8:32: VarDecl=g_shared:8:32 (Definition)
// CHECK-NEXT: attributes-cuda.cu:8:16: attribute(shared)
// CHECK: attributes-cuda.cu:9:28: FunctionDecl=f_host:9:28
// CHECK-NEXT: attributes-cuda.cu:9:16: attribute(host)

View File

@ -0,0 +1,9 @@
// Make sure we can process CUDA file even if driver creates multiple jobs
// RUN: c-index-test -test-load-source all %s | FileCheck %s -check-prefix=CHECK-ANY
// Make sure we process correct side of cuda compilation
// RUN: c-index-test -test-load-source all --cuda-host-only %s | FileCheck %s -check-prefix=CHECK-HOST
// RUN: c-index-test -test-load-source all --cuda-device-only %s | FileCheck %s -check-prefix=CHECK-DEVICE
// CHECK-ANY: macro definition=__cplusplus
// CHECK-HOST-NOT: macro definition=__CUDA_ARCH__
// CHECK-DEVICE: macro definition=__CUDA_ARCH__

View File

@ -3102,6 +3102,12 @@ static void clang_parseTranslationUnit_Impl(void *UserData) {
/*AllowPCHWithCompilerErrors=*/true, SkipFunctionBodies,
/*UserFilesAreVolatile=*/true, ForSerialization, &ErrUnit));
// Early failures in LoadFromCommandLine may return with ErrUnit unset.
if (!Unit && !ErrUnit) {
PTUI->result = CXError_ASTReadError;
return;
}
if (NumErrors != Diags->getClient()->getNumErrors()) {
// Make sure to check that 'Unit' is non-NULL.
if (CXXIdx->getDisplayDiagnostics())

View File

@ -164,6 +164,7 @@ testing::AssertionResult matchesConditionallyWithCuda(
std::vector<std::string> Args;
Args.push_back("-xcuda");
Args.push_back("-fno-ms-extensions");
Args.push_back("--cuda-host-only");
Args.push_back(CompileArg);
if (!runToolOnCodeWithArgs(Factory->create(),
CudaHeader + Code, Args)) {