[mlir][tosa] Materialize tosa.pad value and fold noop pads

Padding now can explicitly specify the padding value when non-zero is wanted.
This also includes bypassing pads when the pad does nothing.

Differential Revision: https://reviews.llvm.org/D113611
This commit is contained in:
Rob Suderman 2021-11-10 14:02:54 -08:00
parent 54eec7cafc
commit 0f1e52afa9
3 changed files with 105 additions and 0 deletions

View File

@ -1417,6 +1417,9 @@ def Tosa_PadOp : Tosa_Op<"pad", [
let builders = [Tosa_PadOpQuantInfoBuilder,
Tosa_ExplicitValuePadOpQuantInfoBuilder];
let hasCanonicalizer = 1;
let hasFolder = 1;
}
//===----------------------------------------------------------------------===//

View File

@ -376,6 +376,53 @@ void MulOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
results.insert<MulOneOptimization>(context);
}
struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::PadOp op,
PatternRewriter &rewriter) const override {
if (op.pad_const())
return failure();
auto input = op.input1();
auto padding = op.padding();
ShapedType inputTy = input.getType().cast<ShapedType>();
Type elementTy = inputTy.getElementType();
Attribute constantAttr;
if (elementTy.isa<FloatType>())
constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
else if (elementTy.isa<IntegerType>() && !op.quantization_info())
constantAttr = rewriter.getIntegerAttr(elementTy, 0);
else if (elementTy.isa<IntegerType>() && op.quantization_info()) {
auto value = op.quantization_info().getValue().input_zp().getValue();
constantAttr = rewriter.getIntegerAttr(elementTy, value.getZExtValue());
}
if (!constantAttr) {
return rewriter.notifyMatchFailure(
op,
"tosa.pad to linalg lowering encountered an unknown element type");
}
auto denseAttr = DenseElementsAttr::get(
RankedTensorType::get({}, elementTy), constantAttr);
auto constantVal = rewriter.create<tosa::ConstOp>(
op.getLoc(), denseAttr.getType(), denseAttr);
rewriter.replaceOpWithNewOp<tosa::PadOp>(
op, op.getType(), ValueRange{input, padding, constantVal},
op->getAttrs());
return success();
}
};
void PadOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<MaterializePadValue>(context);
}
//===----------------------------------------------------------------------===//
// Operator Folders.
//===----------------------------------------------------------------------===//
@ -415,6 +462,18 @@ ReduceFolder(ReduceAllOp) ReduceFolder(ReduceAnyOp) ReduceFolder(ReduceMaxOp)
return input1();
}
OpFoldResult PadOp::fold(ArrayRef<Attribute> operands) {
// If the pad is all zeros we can fold this operation away.
if (operands[1]) {
auto densePad = operands[1].cast<DenseElementsAttr>();
if (densePad.isSplat() && densePad.getSplatValue<APInt>().isZero()) {
return input1();
}
}
return {};
}
OpFoldResult SliceOp::fold(ArrayRef<Attribute> operands) {
auto inputTy = input().getType().dyn_cast<RankedTensorType>();
auto outputTy = getType().dyn_cast<RankedTensorType>();

View File

@ -66,6 +66,49 @@ func @concat_fold_cast(%arg0: tensor<?x1xf32>) -> tensor<?x?xf32> {
return %0 : tensor<?x?xf32>
}
// ----
// CHECK-LABEL: @pad_noop
func @pad_noop(%arg0: tensor<?x?xf32>) -> tensor<?x?xf32> {
// CHECK: return %arg0
%0 = "tosa.const"() { value = dense<0> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %0) : (tensor<?x?xf32>, tensor<2x2xi32>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// ----
// CHECK-LABEL: @pad_determine_val_i32
func @pad_determine_val_i32(%arg0: tensor<?x?xi32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xi32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<0> : tensor<i32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
%0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) : (tensor<?x?xi32>, tensor<2x2xi32>) -> tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}
// ----
// CHECK-LABEL: @pad_determine_val_f32
func @pad_determine_val_f32(%arg0: tensor<?x?xf32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xf32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<0.000000e+00> : tensor<f32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
%0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<2x2xi32>) -> tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// ----
// CHECK-LABEL: @pad_determine_val_quant
func @pad_determine_val_quant(%arg0: tensor<?x?xi32>, %arg1 : tensor<2x2xi32>) -> tensor<?x?xi32> {
// CHECK: %[[ZERO:.+]] = "tosa.const"() {value = dense<42> : tensor<i32>}
// CHECK: "tosa.pad"(%arg0, %arg1, %[[ZERO]])
%0 = "tosa.const"() { value = dense<[[1, 0], [0, 1]]> : tensor<2x2xi32>} : () -> tensor<2x2xi32>
%1 = "tosa.pad"(%arg0, %arg1) { quantization_info = {input_zp = 42:i32} } : (tensor<?x?xi32>, tensor<2x2xi32>) -> tensor<?x?xi32>
return %1 : tensor<?x?xi32>
}
// -----
// CHECK-LABEL: @mul_one_different_shape