forked from OSchip/llvm-project
[libc++] Fix potential OOB in poisson_distribution
See details in the original Chromium bug report: https://bugs.chromium.org/p/chromium/issues/detail?id=994957
This commit is contained in:
parent
69ce2ae990
commit
0ec6a4882e
|
@ -4592,7 +4592,10 @@ public:
|
|||
|
||||
template<class _IntType>
|
||||
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
||||
: __mean_(__mean)
|
||||
// According to the standard `inf` is a valid input, but it causes the
|
||||
// distribution to hang, so we replace it with the maximum representable
|
||||
// mean.
|
||||
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
|
||||
{
|
||||
if (__mean_ < 10)
|
||||
{
|
||||
|
@ -4610,7 +4613,7 @@ poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
|||
{
|
||||
__s_ = _VSTD::sqrt(__mean_);
|
||||
__d_ = 6 * __mean_ * __mean_;
|
||||
__l_ = static_cast<result_type>(__mean_ - 1.1484);
|
||||
__l_ = std::trunc(__mean_ - 1.1484);
|
||||
__omega_ = .3989423 / __s_;
|
||||
double __b1_ = .4166667E-1 / __mean_;
|
||||
double __b2_ = .3 * __b1_ * __b1_;
|
||||
|
@ -4627,12 +4630,12 @@ template<class _URNG>
|
|||
_IntType
|
||||
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
||||
{
|
||||
result_type __x;
|
||||
double __tx;
|
||||
uniform_real_distribution<double> __urd;
|
||||
if (__pr.__mean_ < 10)
|
||||
{
|
||||
__x = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__x)
|
||||
__tx = 0;
|
||||
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
||||
__p *= __urd(__urng);
|
||||
}
|
||||
else
|
||||
|
@ -4642,19 +4645,19 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||
double __u;
|
||||
if (__g > 0)
|
||||
{
|
||||
__x = static_cast<result_type>(__g);
|
||||
if (__x >= __pr.__l_)
|
||||
return __x;
|
||||
__difmuk = __pr.__mean_ - __x;
|
||||
__tx = std::trunc(__g);
|
||||
if (__tx >= __pr.__l_)
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__u = __urd(__urng);
|
||||
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
||||
return __x;
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
exponential_distribution<double> __edist;
|
||||
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
||||
{
|
||||
double __e;
|
||||
if (__using_exp_dist || __g < 0)
|
||||
if (__using_exp_dist || __g <= 0)
|
||||
{
|
||||
double __t;
|
||||
do
|
||||
|
@ -4664,31 +4667,31 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||
__u += __u - 1;
|
||||
__t = 1.8 + (__u < 0 ? -__e : __e);
|
||||
} while (__t <= -.6744);
|
||||
__x = __pr.__mean_ + __pr.__s_ * __t;
|
||||
__difmuk = __pr.__mean_ - __x;
|
||||
__tx = std::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
||||
__difmuk = __pr.__mean_ - __tx;
|
||||
__using_exp_dist = true;
|
||||
}
|
||||
double __px;
|
||||
double __py;
|
||||
if (__x < 10)
|
||||
if (__tx < 10 && __tx >= 0)
|
||||
{
|
||||
const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
||||
40320, 362880};
|
||||
__px = -__pr.__mean_;
|
||||
__py = _VSTD::pow(__pr.__mean_, (double)__x) / __fac[__x];
|
||||
__py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
||||
}
|
||||
else
|
||||
{
|
||||
double __del = .8333333E-1 / __x;
|
||||
double __del = .8333333E-1 / __tx;
|
||||
__del -= 4.8 * __del * __del * __del;
|
||||
double __v = __difmuk / __x;
|
||||
double __v = __difmuk / __tx;
|
||||
if (_VSTD::abs(__v) > 0.25)
|
||||
__px = __x * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||
__px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
|
||||
else
|
||||
__px = __x * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||
__px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
||||
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
||||
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
||||
__py = .3989423 / _VSTD::sqrt(__x);
|
||||
__py = .3989423 / _VSTD::sqrt(__tx);
|
||||
}
|
||||
double __r = (0.5 - __difmuk) / __pr.__s_;
|
||||
double __r2 = __r * __r;
|
||||
|
@ -4708,7 +4711,7 @@ poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr
|
|||
}
|
||||
}
|
||||
}
|
||||
return __x;
|
||||
return std::__clamp_to_integral<result_type>(__tx);
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _IntType>
|
||||
|
|
|
@ -30,6 +30,16 @@ sqr(T x)
|
|||
return x * x;
|
||||
}
|
||||
|
||||
void test_small_inputs() {
|
||||
std::mt19937 engine;
|
||||
std::geometric_distribution<std::int16_t> distribution(5.45361e-311);
|
||||
typedef std::geometric_distribution<std::int16_t>::result_type result_type;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
volatile result_type res = distribution(engine);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
|
@ -296,6 +306,7 @@ int main(int, char**)
|
|||
test4();
|
||||
test5();
|
||||
test6();
|
||||
test_small_inputs();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -30,6 +30,67 @@ sqr(T x)
|
|||
return x * x;
|
||||
}
|
||||
|
||||
void test_bad_ranges() {
|
||||
// Test cases where the mean is around the largest representable integer for
|
||||
// `result_type`. These cases don't generate valid poisson distributions, but
|
||||
// at least they don't blow up.
|
||||
std::mt19937 eng;
|
||||
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(32710.9);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<std::int16_t>::max());
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(
|
||||
static_cast<double>(std::numeric_limits<std::int16_t>::max()) + 10);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(
|
||||
static_cast<double>(std::numeric_limits<std::int16_t>::max()) * 2);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||
std::poisson_distribution<std::int16_t> distribution(std::numeric_limits<double>::infinity());
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
std::poisson_distribution<std::int16_t> distribution(0);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
{
|
||||
// We convert `INF` to `DBL_MAX` otherwise the distribution will hang.
|
||||
std::poisson_distribution<std::int16_t> distribution(-100);
|
||||
for (int i=0; i < 1000; ++i) {
|
||||
volatile std::int16_t res = distribution(eng);
|
||||
((void)res);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
{
|
||||
|
@ -150,5 +211,6 @@ int main(int, char**)
|
|||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
|
||||
return 0;
|
||||
test_bad_ranges();
|
||||
return 0;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue