[VectorCombine] scalarize binop of inserted elements into vector constants

As with the extractelement patterns that are currently in vector-combine,
there are going to be several possible variations on this theme. This
should be the clearest, simplest example.

Scalarization is the right direction for target-independent canonicalization,
and InstCombine has some of those folds already, but it doesn't do this.
I proposed a similar transform in D50992. Here in vector-combine, we can
check the cost model to be sure it's profitable, so there should be less risk.

Differential Revision: https://reviews.llvm.org/D79452
This commit is contained in:
Sanjay Patel 2020-05-08 16:29:07 -04:00
parent eb7d32e46f
commit 0d2a0b44c8
2 changed files with 93 additions and 24 deletions

View File

@ -34,6 +34,7 @@ using namespace llvm::PatternMatch;
#define DEBUG_TYPE "vector-combine"
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
@ -308,6 +309,64 @@ static bool foldBitcastShuf(Instruction &I, const TargetTransformInfo &TTI) {
return true;
}
/// Match a vector binop instruction with inserted scalar operands and convert
/// to scalar binop followed by insertelement.
static bool scalarizeBinop(Instruction &I, const TargetTransformInfo &TTI) {
Instruction *Ins0, *Ins1;
if (!match(&I, m_BinOp(m_Instruction(Ins0), m_Instruction(Ins1))))
return false;
// TODO: Loosen restriction for one-use by adjusting cost equation.
// TODO: Deal with mismatched index constants and variable indexes?
Constant *VecC0, *VecC1;
Value *V0, *V1;
uint64_t Index;
if (!match(Ins0, m_OneUse(m_InsertElement(m_Constant(VecC0), m_Value(V0),
m_ConstantInt(Index)))) ||
!match(Ins1, m_OneUse(m_InsertElement(m_Constant(VecC1), m_Value(V1),
m_SpecificInt(Index)))))
return false;
Type *ScalarTy = V0->getType();
Type *VecTy = I.getType();
assert(VecTy->isVectorTy() && ScalarTy == V1->getType() &&
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy()) &&
"Unexpected types for insert into binop");
Instruction::BinaryOps Opcode = cast<BinaryOperator>(&I)->getOpcode();
int ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
int VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
// Get cost estimate for the insert element. This cost will factor into
// both sequences.
int InsertCost =
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
int OldCost = InsertCost + InsertCost + VectorOpCost;
int NewCost = ScalarOpCost + InsertCost;
// We want to scalarize unless the vector variant actually has lower cost.
if (OldCost < NewCost)
return false;
// vec_bo (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
// inselt NewVecC, (scalar_bo V0, V1), Index
++NumScalarBO;
IRBuilder<> Builder(&I);
Value *Scalar = Builder.CreateBinOp(Opcode, V0, V1, I.getName() + ".scalar");
// All IR flags are safe to back-propagate. There is no potential for extra
// poison to be created by the scalar instruction.
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
ScalarInst->copyIRFlags(&I);
// Fold the vector constants in the original vectors into a new base vector.
Constant *NewVecC = ConstantExpr::get(Opcode, VecC0, VecC1);
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
I.replaceAllUsesWith(Insert);
Insert->takeName(&I);
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, const TargetTransformInfo &TTI,
@ -330,6 +389,7 @@ static bool runImpl(Function &F, const TargetTransformInfo &TTI,
continue;
MadeChange |= foldExtractExtract(I, TTI);
MadeChange |= foldBitcastShuf(I, TTI);
MadeChange |= scalarizeBinop(I, TTI);
}
}

View File

@ -8,9 +8,8 @@ declare void @use(<4 x i32>)
define <16 x i8> @ins0_ins0_add(i8 %x, i8 %y) {
; CHECK-LABEL: @ins0_ins0_add(
; CHECK-NEXT: [[I0:%.*]] = insertelement <16 x i8> undef, i8 [[X:%.*]], i32 0
; CHECK-NEXT: [[I1:%.*]] = insertelement <16 x i8> undef, i8 [[Y:%.*]], i32 0
; CHECK-NEXT: [[R:%.*]] = add <16 x i8> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = add i8 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <16 x i8> undef, i8 [[R_SCALAR]], i64 0
; CHECK-NEXT: ret <16 x i8> [[R]]
;
%i0 = insertelement <16 x i8> undef, i8 %x, i32 0
@ -23,9 +22,8 @@ define <16 x i8> @ins0_ins0_add(i8 %x, i8 %y) {
define <8 x i16> @ins0_ins0_sub_flags(i16 %x, i16 %y) {
; CHECK-LABEL: @ins0_ins0_sub_flags(
; CHECK-NEXT: [[I0:%.*]] = insertelement <8 x i16> undef, i16 [[X:%.*]], i8 5
; CHECK-NEXT: [[I1:%.*]] = insertelement <8 x i16> undef, i16 [[Y:%.*]], i32 5
; CHECK-NEXT: [[R:%.*]] = sub nuw nsw <8 x i16> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = sub nuw nsw i16 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <8 x i16> undef, i16 [[R_SCALAR]], i64 5
; CHECK-NEXT: ret <8 x i16> [[R]]
;
%i0 = insertelement <8 x i16> undef, i16 %x, i8 5
@ -34,11 +32,13 @@ define <8 x i16> @ins0_ins0_sub_flags(i16 %x, i16 %y) {
ret <8 x i16> %r
}
; The new vector constant is calculated by constant folding.
; This is conservatively created as zero rather than undef for 'undef ^ undef'.
define <2 x i64> @ins1_ins1_xor(i64 %x, i64 %y) {
; CHECK-LABEL: @ins1_ins1_xor(
; CHECK-NEXT: [[I0:%.*]] = insertelement <2 x i64> undef, i64 [[X:%.*]], i64 1
; CHECK-NEXT: [[I1:%.*]] = insertelement <2 x i64> undef, i64 [[Y:%.*]], i32 1
; CHECK-NEXT: [[R:%.*]] = xor <2 x i64> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = xor i64 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> zeroinitializer, i64 [[R_SCALAR]], i64 1
; CHECK-NEXT: ret <2 x i64> [[R]]
;
%i0 = insertelement <2 x i64> undef, i64 %x, i64 1
@ -51,9 +51,8 @@ define <2 x i64> @ins1_ins1_xor(i64 %x, i64 %y) {
define <2 x double> @ins0_ins0_fadd(double %x, double %y) {
; CHECK-LABEL: @ins0_ins0_fadd(
; CHECK-NEXT: [[I0:%.*]] = insertelement <2 x double> undef, double [[X:%.*]], i32 0
; CHECK-NEXT: [[I1:%.*]] = insertelement <2 x double> undef, double [[Y:%.*]], i32 0
; CHECK-NEXT: [[R:%.*]] = fadd reassoc nsz <2 x double> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = fadd reassoc nsz double [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x double> undef, double [[R_SCALAR]], i64 0
; CHECK-NEXT: ret <2 x double> [[R]]
;
%i0 = insertelement <2 x double> undef, double %x, i32 0
@ -62,6 +61,8 @@ define <2 x double> @ins0_ins0_fadd(double %x, double %y) {
ret <2 x double> %r
}
; Negative test - mismatched indexes (but could fold this).
define <16 x i8> @ins1_ins0_add(i8 %x, i8 %y) {
; CHECK-LABEL: @ins1_ins0_add(
; CHECK-NEXT: [[I0:%.*]] = insertelement <16 x i8> undef, i8 [[X:%.*]], i32 1
@ -75,11 +76,12 @@ define <16 x i8> @ins1_ins0_add(i8 %x, i8 %y) {
ret <16 x i8> %r
}
; Base vector does not have to be undef.
define <4 x i32> @ins0_ins0_mul(i32 %x, i32 %y) {
; CHECK-LABEL: @ins0_ins0_mul(
; CHECK-NEXT: [[I0:%.*]] = insertelement <4 x i32> zeroinitializer, i32 [[X:%.*]], i32 0
; CHECK-NEXT: [[I1:%.*]] = insertelement <4 x i32> undef, i32 [[Y:%.*]], i32 0
; CHECK-NEXT: [[R:%.*]] = mul <4 x i32> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = mul i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <4 x i32> zeroinitializer, i32 [[R_SCALAR]], i64 0
; CHECK-NEXT: ret <4 x i32> [[R]]
;
%i0 = insertelement <4 x i32> zeroinitializer, i32 %x, i32 0
@ -88,11 +90,12 @@ define <4 x i32> @ins0_ins0_mul(i32 %x, i32 %y) {
ret <4 x i32> %r
}
; It is safe to scalarize any binop (no extra UB/poison danger).
define <2 x i64> @ins1_ins1_sdiv(i64 %x, i64 %y) {
; CHECK-LABEL: @ins1_ins1_sdiv(
; CHECK-NEXT: [[I0:%.*]] = insertelement <2 x i64> <i64 42, i64 -42>, i64 [[X:%.*]], i64 1
; CHECK-NEXT: [[I1:%.*]] = insertelement <2 x i64> <i64 -7, i64 128>, i64 [[Y:%.*]], i32 1
; CHECK-NEXT: [[R:%.*]] = sdiv <2 x i64> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = sdiv i64 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 -6, i64 0>, i64 [[R_SCALAR]], i64 1
; CHECK-NEXT: ret <2 x i64> [[R]]
;
%i0 = insertelement <2 x i64> <i64 42, i64 -42>, i64 %x, i64 1
@ -101,11 +104,12 @@ define <2 x i64> @ins1_ins1_sdiv(i64 %x, i64 %y) {
ret <2 x i64> %r
}
; Constant folding deals with undef per element - the entire value does not become undef.
define <2 x i64> @ins1_ins1_udiv(i64 %x, i64 %y) {
; CHECK-LABEL: @ins1_ins1_udiv(
; CHECK-NEXT: [[I0:%.*]] = insertelement <2 x i64> <i64 42, i64 undef>, i64 [[X:%.*]], i32 1
; CHECK-NEXT: [[I1:%.*]] = insertelement <2 x i64> <i64 7, i64 undef>, i64 [[Y:%.*]], i32 1
; CHECK-NEXT: [[R:%.*]] = udiv <2 x i64> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = udiv i64 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 6, i64 undef>, i64 [[R_SCALAR]], i64 1
; CHECK-NEXT: ret <2 x i64> [[R]]
;
%i0 = insertelement <2 x i64> <i64 42, i64 undef>, i64 %x, i32 1
@ -114,11 +118,13 @@ define <2 x i64> @ins1_ins1_udiv(i64 %x, i64 %y) {
ret <2 x i64> %r
}
; This could be simplified -- creates immediate UB without the transform because
; divisor has an undef element -- but that is hidden after the transform.
define <2 x i64> @ins1_ins1_urem(i64 %x, i64 %y) {
; CHECK-LABEL: @ins1_ins1_urem(
; CHECK-NEXT: [[I0:%.*]] = insertelement <2 x i64> <i64 42, i64 undef>, i64 [[X:%.*]], i64 1
; CHECK-NEXT: [[I1:%.*]] = insertelement <2 x i64> <i64 undef, i64 128>, i64 [[Y:%.*]], i32 1
; CHECK-NEXT: [[R:%.*]] = urem <2 x i64> [[I0]], [[I1]]
; CHECK-NEXT: [[R_SCALAR:%.*]] = urem i64 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[R:%.*]] = insertelement <2 x i64> <i64 undef, i64 0>, i64 [[R_SCALAR]], i64 1
; CHECK-NEXT: ret <2 x i64> [[R]]
;
%i0 = insertelement <2 x i64> <i64 42, i64 undef>, i64 %x, i64 1
@ -127,6 +133,9 @@ define <2 x i64> @ins1_ins1_urem(i64 %x, i64 %y) {
ret <2 x i64> %r
}
; Negative test
; TODO: extra use can be accounted for in cost calculation.
define <4 x i32> @ins0_ins0_xor(i32 %x, i32 %y) {
; CHECK-LABEL: @ins0_ins0_xor(
; CHECK-NEXT: [[I0:%.*]] = insertelement <4 x i32> undef, i32 [[X:%.*]], i32 0