Replace intersectWith with maximalIntersectWith. The latter guarantees that

all values belonging to the intersection will belong to the resulting range.
The former was inconsistent about that point (either way is fine, just pick
one.) This is part of PR4545.

llvm-svn: 76289
This commit is contained in:
Nick Lewycky 2009-07-18 06:34:42 +00:00
parent e9812bdac5
commit 0d13903563
5 changed files with 29 additions and 85 deletions

View File

@ -153,21 +153,13 @@ public:
ConstantRange subtract(const APInt &CI) const;
/// intersectWith - Return the range that results from the intersection of
/// this range with another range. The resultant range is pruned as much as
/// possible, but there may be cases where elements are included that are in
/// one of the sets but not the other. For example: [100, 8) intersect [3,
/// 120) yields [3, 120)
///
ConstantRange intersectWith(const ConstantRange &CR) const;
/// maximalIntersectWith - Return the range that results from the intersection
/// of this range with another range. The resultant range is guaranteed to
/// this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.maximalIntersectWith(B) might not
/// be equal to B.maximalIntersectWith(A).
/// intersections with the same set size, A.intersectWith(B) might not
/// be equal to B.intersectWith(A).
///
ConstantRange maximalIntersectWith(const ConstantRange &CR) const;
ConstantRange intersectWith(const ConstantRange &CR) const;
/// unionWith - Return the range that results from the union of this range
/// with another range. The resultant range is guaranteed to include the

View File

@ -142,14 +142,13 @@ ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE
if (R.getUnsignedMin() == 0) {
// Just because it contains zero, doesn't mean it will also contain one.
// Use maximalIntersectWith to get the right behaviour.
ConstantRange NotZero(APInt(L.getBitWidth(), 1),
APInt::getNullValue(L.getBitWidth()));
R = R.maximalIntersectWith(NotZero);
R = R.intersectWith(NotZero);
}
// But, the maximal intersection might still include zero. If it does, then
// we know it also included one.
// But, the intersection might still include zero. If it does, then we know
// it also included one.
if (R.contains(APInt::getNullValue(L.getBitWidth())))
Upper = L.getUnsignedMax();
else
@ -295,5 +294,5 @@ void LoopVR::narrow(Value *V, const ConstantRange &CR) {
if (I == Map.end())
Map[V] = new ConstantRange(CR);
else
Map[V] = new ConstantRange(Map[V]->maximalIntersectWith(CR));
Map[V] = new ConstantRange(Map[V]->intersectWith(CR));
}

View File

@ -275,49 +275,11 @@ ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
}
/// intersectWith - Return the range that results from the intersection of this
/// range with another range.
///
/// range with another range. The resultant range is guaranteed to include all
/// elements contained in both input ranges, and to have the smallest possible
/// set size that does so. Because there may be two intersections with the
/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
// Handle common special cases
if (isEmptySet() || CR.isFullSet())
return *this;
if (isFullSet() || CR.isEmptySet())
return CR;
if (!isWrappedSet()) {
if (!CR.isWrappedSet()) {
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
if (L.ult(U)) // If range isn't empty...
return ConstantRange(L, U);
else
return ConstantRange(getBitWidth(), false);// Otherwise, empty set
} else
return intersect1Wrapped(CR, *this);
} else { // We know "this" is wrapped...
if (!CR.isWrappedSet())
return intersect1Wrapped(*this, CR);
else {
// Both ranges are wrapped...
APInt L = APIntOps::umax(Lower, CR.Lower);
APInt U = APIntOps::umin(Upper, CR.Upper);
return ConstantRange(L, U);
}
}
return *this;
}
/// maximalIntersectWith - Return the range that results from the intersection
/// of this range with another range. The resultant range is guaranteed to
/// include all elements contained in both input ranges, and to have the
/// smallest possible set size that does so. Because there may be two
/// intersections with the same set size, A.maximalIntersectWith(B) might not
/// be equal to B.maximalIntersect(A).
ConstantRange
ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
assert(getBitWidth() == CR.getBitWidth() &&
"ConstantRange types don't agree!");
@ -326,7 +288,7 @@ ConstantRange::maximalIntersectWith(const ConstantRange &CR) const {
if (CR.isEmptySet() || isFullSet()) return CR;
if (!isWrappedSet() && CR.isWrappedSet())
return CR.maximalIntersectWith(*this);
return CR.intersectWith(*this);
if (!isWrappedSet() && !CR.isWrappedSet()) {
if (Lower.ult(CR.Lower)) {

View File

@ -968,7 +968,7 @@ namespace {
std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
if (I != end() && I->first == Subtree) {
ConstantRange CR2 = I->second.maximalIntersectWith(CR);
ConstantRange CR2 = I->second.intersectWith(CR);
assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
"Invalid union of ranges.");
I->second = CR2;
@ -1000,18 +1000,18 @@ namespace {
ConstantRange Range(CR.getBitWidth());
if (LV_s == SGT_BIT) {
Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Range = Range.intersectWith(ConstantRange::makeICmpRegion(
hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
} else if (LV_s == SLT_BIT) {
Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Range = Range.intersectWith(ConstantRange::makeICmpRegion(
hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
}
if (LV_u == UGT_BIT) {
Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Range = Range.intersectWith(ConstantRange::makeICmpRegion(
hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
} else if (LV_u == ULT_BIT) {
Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Range = Range.intersectWith(ConstantRange::makeICmpRegion(
hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
}
@ -1083,7 +1083,7 @@ namespace {
switch (LV) {
default: assert(!"Impossible lattice value!");
case NE:
return CR1.maximalIntersectWith(CR2).isEmptySet();
return CR1.intersectWith(CR2).isEmptySet();
case ULT:
return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
case ULE:
@ -1149,7 +1149,7 @@ namespace {
unsigned i = VN.valueNumber(*I, Subtree);
ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
if (CR_Kill.isFullSet()) continue;
Merged = Merged.maximalIntersectWith(CR_Kill);
Merged = Merged.intersectWith(CR_Kill);
}
if (Merged.isFullSet() || Merged == CR_New) return;
@ -1159,7 +1159,7 @@ namespace {
void applyRange(unsigned n, const ConstantRange &CR,
DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree));
ConstantRange Merged = CR.intersectWith(range(n, Subtree));
if (Merged.isEmptySet()) {
markBlock(VRP);
return;
@ -1249,13 +1249,13 @@ namespace {
ConstantRange CR2 = range(n2, Subtree);
if (!CR1.isSingleElement()) {
ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2));
ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2));
if (NewCR1 != CR1)
applyRange(n1, NewCR1, Subtree, VRP);
}
if (!CR2.isSingleElement()) {
ConstantRange NewCR2 = CR2.maximalIntersectWith(
ConstantRange NewCR2 = CR2.intersectWith(
create(reversePredicate(LV), CR1));
if (NewCR2 != CR2)
applyRange(n2, NewCR2, Subtree, VRP);

View File

@ -203,22 +203,13 @@ TEST_F(ConstantRangeTest, IntersectWith) {
EXPECT_TRUE(Some.intersectWith(Wrap).isEmptySet());
EXPECT_TRUE(One.intersectWith(Wrap).isEmptySet());
EXPECT_EQ(One.intersectWith(Wrap), Wrap.intersectWith(One));
}
TEST_F(ConstantRangeTest, MaximalIntersectWith) {
EXPECT_TRUE(Empty.maximalIntersectWith(Full).isEmptySet());
EXPECT_TRUE(Empty.maximalIntersectWith(Empty).isEmptySet());
EXPECT_TRUE(Empty.maximalIntersectWith(One).isEmptySet());
EXPECT_TRUE(Empty.maximalIntersectWith(Some).isEmptySet());
EXPECT_TRUE(Empty.maximalIntersectWith(Wrap).isEmptySet());
EXPECT_TRUE(Full.maximalIntersectWith(Full).isFullSet());
EXPECT_TRUE(Some.maximalIntersectWith(Some) == Some);
EXPECT_TRUE(Some.maximalIntersectWith(One) == One);
EXPECT_TRUE(Full.maximalIntersectWith(One) == One);
EXPECT_TRUE(Full.maximalIntersectWith(Some) == Some);
EXPECT_TRUE(Some.maximalIntersectWith(Wrap).isEmptySet());
EXPECT_TRUE(One.maximalIntersectWith(Wrap).isEmptySet());
EXPECT_EQ(One.maximalIntersectWith(Wrap), Wrap.maximalIntersectWith(One));
// Klee generated testcase from PR4545.
// The intersection of i16 [4, 2) and [6, 5) is disjoint, looking like
// 01..4.6789ABCDEF where the dots represent values not in the intersection.
ConstantRange LHS(APInt(16, 4), APInt(16, 2));
ConstantRange RHS(APInt(16, 6), APInt(16, 5));
EXPECT_EQ(LHS.intersectWith(RHS), LHS);
}
TEST_F(ConstantRangeTest, UnionWith) {