[mlir][sparse] Remove comment w/ code in it

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D107484
This commit is contained in:
Gus Smith 2021-08-04 17:58:49 +00:00
parent 14cb67862a
commit 0bd2d4c4b1
1 changed files with 1 additions and 37 deletions

View File

@ -5,44 +5,8 @@
#
# see http://frostt.io/tensors/file-formats.html
#
# This matrix represents the "B" input to the MTTKRP kernel:
# This tensor represents the "B" input to the MTTKRP kernel:
# http://tensor-compiler.org/docs/data_analytics/index.html
#
# It can be generated with the following script, adapted from the above link:
#
#> import pytaco as pt
#> import numpy as np
#> from pytaco import compressed, dense
#> import random
#>
#> # Define formats for storing the sparse tensor and dense matrices.
#> csf = pt.format([compressed, compressed, compressed])
#> rm = pt.format([dense, dense])
#
#> B=pt.tensor((2,3,4),csf)
#> density = 0.25
#> for i in range(2):
#> for j in range(3):
#> for k in range(4):
#> if random.random() > density:
#> B.insert((i,j,k), random.randint(0,100))
#>
#> C = pt.from_array(np.arange(B.shape[1]*5).reshape(B.shape[1],5))
#> D = pt.from_array(np.arange(B.shape[2]*5).reshape(B.shape[2],5))
#>
#> # Declare the result to be a dense matrix.
#> A = pt.tensor([B.shape[0], 5], rm)
#>
#> # Declare index vars.
#> i, j, k, l = pt.get_index_vars(4)
#>
#> # Define the MTTKRP computation.
#> A[i, j] = B[i, k, l] * D[l, j] * C[k, j]
#>
#> # Perform the MTTKRP computation and write the result to file.
#> pt.write("A.tns", A)
#> pt.write("B.tns", B)
#
3 17
2 3 4
1 1 3 3