Remove OwningPtr.h and associated tests

llvm::OwningPtr is superseded by std::unique_ptr.

llvm-svn: 211259
This commit is contained in:
Alp Toker 2014-06-19 07:25:18 +00:00
parent 6cf6c05322
commit 0b346e6be7
4 changed files with 0 additions and 447 deletions

View File

@ -1,165 +0,0 @@
//===- llvm/ADT/OwningPtr.h - Smart ptr that owns the pointee ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines and implements the OwningPtr class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_OWNINGPTR_H
#define LLVM_ADT_OWNINGPTR_H
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
#include <memory>
namespace llvm {
/// OwningPtr smart pointer - OwningPtr mimics a built-in pointer except that it
/// guarantees deletion of the object pointed to, either on destruction of the
/// OwningPtr or via an explicit reset(). Once created, ownership of the
/// pointee object can be taken away from OwningPtr by using the take method.
template<class T>
class OwningPtr {
OwningPtr(OwningPtr const &) LLVM_DELETED_FUNCTION;
OwningPtr &operator=(OwningPtr const &) LLVM_DELETED_FUNCTION;
T *Ptr;
public:
explicit OwningPtr(T *P = 0) : Ptr(P) {}
OwningPtr(OwningPtr &&Other) : Ptr(Other.take()) {}
OwningPtr &operator=(OwningPtr &&Other) {
reset(Other.take());
return *this;
}
OwningPtr(std::unique_ptr<T> Other) : Ptr(Other.release()) {}
OwningPtr &operator=(std::unique_ptr<T> Other) {
reset(Other.release());
return *this;
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
operator std::unique_ptr<T>() && { return std::unique_ptr<T>(take()); }
#endif
~OwningPtr() {
delete Ptr;
}
/// reset - Change the current pointee to the specified pointer. Note that
/// calling this with any pointer (including a null pointer) deletes the
/// current pointer.
void reset(T *P = 0) {
if (P == Ptr) return;
T *Tmp = Ptr;
Ptr = P;
delete Tmp;
}
/// take - Reset the owning pointer to null and return its pointer. This does
/// not delete the pointer before returning it.
T *take() {
T *Tmp = Ptr;
Ptr = nullptr;
return Tmp;
}
T *release() { return take(); }
std::unique_ptr<T> take_unique() { return std::unique_ptr<T>(take()); }
T &operator*() const {
assert(Ptr && "Cannot dereference null pointer");
return *Ptr;
}
T *operator->() const { return Ptr; }
T *get() const { return Ptr; }
LLVM_EXPLICIT operator bool() const { return Ptr != nullptr; }
bool operator!() const { return Ptr == nullptr; }
bool isValid() const { return Ptr != nullptr; }
void swap(OwningPtr &RHS) {
T *Tmp = RHS.Ptr;
RHS.Ptr = Ptr;
Ptr = Tmp;
}
};
template<class T>
inline void swap(OwningPtr<T> &a, OwningPtr<T> &b) {
a.swap(b);
}
/// OwningArrayPtr smart pointer - OwningArrayPtr provides the same
/// functionality as OwningPtr, except that it works for array types.
template<class T>
class OwningArrayPtr {
OwningArrayPtr(OwningArrayPtr const &) LLVM_DELETED_FUNCTION;
OwningArrayPtr &operator=(OwningArrayPtr const &) LLVM_DELETED_FUNCTION;
T *Ptr;
public:
explicit OwningArrayPtr(T *P = 0) : Ptr(P) {}
OwningArrayPtr(OwningArrayPtr &&Other) : Ptr(Other.take()) {}
OwningArrayPtr &operator=(OwningArrayPtr &&Other) {
reset(Other.take());
return *this;
}
~OwningArrayPtr() {
delete [] Ptr;
}
/// reset - Change the current pointee to the specified pointer. Note that
/// calling this with any pointer (including a null pointer) deletes the
/// current pointer.
void reset(T *P = 0) {
if (P == Ptr) return;
T *Tmp = Ptr;
Ptr = P;
delete [] Tmp;
}
/// take - Reset the owning pointer to null and return its pointer. This does
/// not delete the pointer before returning it.
T *take() {
T *Tmp = Ptr;
Ptr = 0;
return Tmp;
}
T &operator[](std::ptrdiff_t i) const {
assert(Ptr && "Cannot dereference null pointer");
return Ptr[i];
}
T *get() const { return Ptr; }
LLVM_EXPLICIT operator bool() const { return Ptr != 0; }
bool operator!() const { return Ptr == nullptr; }
void swap(OwningArrayPtr &RHS) {
T *Tmp = RHS.Ptr;
RHS.Ptr = Ptr;
Ptr = Tmp;
}
};
template<class T>
inline void swap(OwningArrayPtr<T> &a, OwningArrayPtr<T> &b) {
a.swap(b);
}
} // end namespace llvm
#endif

View File

@ -23,7 +23,6 @@ set(ADTSources
MakeUniqueTest.cpp
MapVectorTest.cpp
OptionalTest.cpp
OwningPtrTest.cpp
PackedVectorTest.cpp
PointerIntPairTest.cpp
PointerUnionTest.cpp

View File

@ -1,273 +0,0 @@
//===- llvm/unittest/ADT/OwningPtrTest.cpp - OwningPtr unit tests ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/OwningPtr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
struct TrackDestructor {
static unsigned Destructions;
int val;
explicit TrackDestructor(int val) : val(val) {}
~TrackDestructor() { ++Destructions; }
static void ResetCounts() { Destructions = 0; }
private:
TrackDestructor(const TrackDestructor &other) LLVM_DELETED_FUNCTION;
TrackDestructor &
operator=(const TrackDestructor &other) LLVM_DELETED_FUNCTION;
TrackDestructor(TrackDestructor &&other) LLVM_DELETED_FUNCTION;
TrackDestructor &operator=(TrackDestructor &&other) LLVM_DELETED_FUNCTION;
};
unsigned TrackDestructor::Destructions = 0;
// Test fixture
class OwningPtrTest : public testing::Test {};
TEST_F(OwningPtrTest, DefaultConstruction) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> O;
EXPECT_FALSE(O);
EXPECT_TRUE(!O);
EXPECT_FALSE(O.get());
EXPECT_FALSE(O.isValid());
}
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, PtrConstruction) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> O(new TrackDestructor(3));
EXPECT_TRUE((bool)O);
EXPECT_FALSE(!O);
EXPECT_TRUE(O.get());
EXPECT_TRUE(O.isValid());
EXPECT_EQ(3, (*O).val);
EXPECT_EQ(3, O->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, Reset) {
TrackDestructor::ResetCounts();
OwningPtr<TrackDestructor> O(new TrackDestructor(3));
EXPECT_EQ(0u, TrackDestructor::Destructions);
O.reset();
EXPECT_FALSE((bool)O);
EXPECT_TRUE(!O);
EXPECT_FALSE(O.get());
EXPECT_FALSE(O.isValid());
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, Take) {
TrackDestructor::ResetCounts();
TrackDestructor *T = nullptr;
{
OwningPtr<TrackDestructor> O(new TrackDestructor(3));
T = O.take();
EXPECT_FALSE((bool)O);
EXPECT_TRUE(!O);
EXPECT_FALSE(O.get());
EXPECT_FALSE(O.isValid());
EXPECT_TRUE(T);
EXPECT_EQ(3, T->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
delete T;
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, Release) {
TrackDestructor::ResetCounts();
TrackDestructor *T = nullptr;
{
OwningPtr<TrackDestructor> O(new TrackDestructor(3));
T = O.release();
EXPECT_FALSE((bool)O);
EXPECT_TRUE(!O);
EXPECT_FALSE(O.get());
EXPECT_FALSE(O.isValid());
EXPECT_TRUE(T);
EXPECT_EQ(3, T->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
delete T;
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, MoveConstruction) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B = std::move(A);
EXPECT_FALSE((bool)A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_FALSE(A.isValid());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, MoveAssignment) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B(new TrackDestructor(4));
B = std::move(A);
EXPECT_FALSE(A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_FALSE(A.isValid());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
EXPECT_EQ(2u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, Swap) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B(new TrackDestructor(4));
B.swap(A);
EXPECT_TRUE((bool)A);
EXPECT_FALSE(!A);
EXPECT_TRUE(A.get());
EXPECT_TRUE(A.isValid());
EXPECT_EQ(4, (*A).val);
EXPECT_EQ(4, A->val);
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(2u, TrackDestructor::Destructions);
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B(new TrackDestructor(4));
swap(A, B);
EXPECT_TRUE((bool)A);
EXPECT_FALSE(!A);
EXPECT_TRUE(A.get());
EXPECT_TRUE(A.isValid());
EXPECT_EQ(4, (*A).val);
EXPECT_EQ(4, A->val);
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(2u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, UniqueToOwningConstruction) {
TrackDestructor::ResetCounts();
{
std::unique_ptr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B = std::move(A);
EXPECT_FALSE(A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, UniqueToOwningAssignment) {
TrackDestructor::ResetCounts();
{
std::unique_ptr<TrackDestructor> A(new TrackDestructor(3));
OwningPtr<TrackDestructor> B(new TrackDestructor(4));
B = std::move(A);
EXPECT_FALSE(A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_TRUE(B.isValid());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
EXPECT_EQ(2u, TrackDestructor::Destructions);
}
TEST_F(OwningPtrTest, TakeUniqueConstruction) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
std::unique_ptr<TrackDestructor> B = A.take_unique();
EXPECT_FALSE(A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_FALSE(A.isValid());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
#if LLVM_HAS_RVALUE_REFERENCE_THIS
TEST_F(OwningPtrTest, OwningToUniqueConstruction) {
TrackDestructor::ResetCounts();
{
OwningPtr<TrackDestructor> A(new TrackDestructor(3));
std::unique_ptr<TrackDestructor> B = std::move(A);
EXPECT_FALSE(A);
EXPECT_TRUE(!A);
EXPECT_FALSE(A.get());
EXPECT_FALSE(A.isValid());
EXPECT_TRUE((bool)B);
EXPECT_FALSE(!B);
EXPECT_TRUE(B.get());
EXPECT_EQ(3, (*B).val);
EXPECT_EQ(3, B->val);
EXPECT_EQ(0u, TrackDestructor::Destructions);
}
EXPECT_EQ(1u, TrackDestructor::Destructions);
}
#endif
}

View File

@ -108,14 +108,6 @@ or create a symbolic link so it updates automatically.
</Expand>
</Type>
<Type Name="llvm::OwningPtr&lt;*&gt;">
<DisplayString Condition="Ptr == 0">empty</DisplayString>
<DisplayString Condition="Ptr != 0">OwningPtr {*Ptr}</DisplayString>
<Expand>
<ExpandedItem Condition="Ptr != 0">Ptr</ExpandedItem>
</Expand>
</Type>
<Type Name="llvm::SmallPtrSet&lt;*,*&gt;">
<DisplayString Condition="CurArray == SmallArray">{{ [Small Mode] size={NumElements}, capacity={CurArraySize} }}</DisplayString>
<DisplayString Condition="CurArray != SmallArray">{{ [Big Mode] size={NumElements}, capacity={CurArraySize} }}</DisplayString>