[mlir] clang-format

Mostly whitespace changes, but this makes these files clang-format clean.

PiperOrigin-RevId: 205697599
This commit is contained in:
James Molloy 2018-07-23 11:44:40 -07:00 committed by jpienaar
parent d600a89391
commit 0b2ec56d8f
3 changed files with 130 additions and 134 deletions

View File

@ -29,69 +29,68 @@
// We include these two headers because they cannot be practically forward // We include these two headers because they cannot be practically forward
// declared, and are effectively language features. // declared, and are effectively language features.
#include "llvm/Support/Casting.h"
#include "llvm/ADT/None.h" #include "llvm/ADT/None.h"
#include "llvm/Support/Casting.h"
// Forward declarations. // Forward declarations.
namespace llvm { namespace llvm {
// Containers. // Containers.
class StringRef; class StringRef;
class StringLiteral; class StringLiteral;
class Twine; class Twine;
template <typename T> class SmallPtrSetImpl; template <typename T> class SmallPtrSetImpl;
template <typename T, unsigned N> class SmallPtrSet; template <typename T, unsigned N> class SmallPtrSet;
template <typename T> class SmallVectorImpl; template <typename T> class SmallVectorImpl;
template <typename T, unsigned N> class SmallVector; template <typename T, unsigned N> class SmallVector;
template <unsigned N> class SmallString; template <unsigned N> class SmallString;
template<typename T> class ArrayRef; template <typename T> class ArrayRef;
template<typename T> class MutableArrayRef; template <typename T> class MutableArrayRef;
template<typename T> class TinyPtrVector; template <typename T> class TinyPtrVector;
template<typename T> class Optional; template <typename T> class Optional;
template <typename PT1, typename PT2> class PointerUnion; template <typename PT1, typename PT2> class PointerUnion;
namespace detail { namespace detail {
template <typename KeyT, typename ValueT> struct DenseMapPair; template <typename KeyT, typename ValueT> struct DenseMapPair;
} }
template<typename T> struct DenseMapInfo; template <typename T> struct DenseMapInfo;
template <typename KeyT, typename ValueT, typename KeyInfoT, typename BucketT> template <typename KeyT, typename ValueT, typename KeyInfoT, typename BucketT>
class DenseMap; class DenseMap;
// Other common classes. // Other common classes.
class raw_ostream; class raw_ostream;
class APInt; class APInt;
class APFloat; class APFloat;
} // end namespace llvm } // end namespace llvm
namespace mlir { namespace mlir {
// Casting operators. // Casting operators.
using llvm::isa; using llvm::cast;
using llvm::cast; using llvm::cast_or_null;
using llvm::dyn_cast; using llvm::dyn_cast;
using llvm::dyn_cast_or_null; using llvm::dyn_cast_or_null;
using llvm::cast_or_null; using llvm::isa;
// Containers. // Containers.
using llvm::None; using llvm::ArrayRef;
using llvm::Optional; using llvm::DenseMap;
using llvm::SmallPtrSetImpl; using llvm::MutableArrayRef;
using llvm::SmallPtrSet; using llvm::None;
using llvm::SmallString; using llvm::Optional;
using llvm::StringRef; using llvm::PointerUnion;
using llvm::StringLiteral; using llvm::SmallPtrSet;
using llvm::Twine; using llvm::SmallPtrSetImpl;
using llvm::SmallVectorImpl; using llvm::SmallString;
using llvm::SmallVector; using llvm::SmallVector;
using llvm::ArrayRef; using llvm::SmallVectorImpl;
using llvm::MutableArrayRef; using llvm::StringLiteral;
using llvm::TinyPtrVector; using llvm::StringRef;
using llvm::PointerUnion; using llvm::TinyPtrVector;
using llvm::DenseMap; using llvm::Twine;
// Other common classes. // Other common classes.
using llvm::raw_ostream; using llvm::APFloat;
using llvm::APInt; using llvm::APInt;
using llvm::APFloat; using llvm::NoneType;
using llvm::NoneType; using llvm::raw_ostream;
} // end namespace swift } // namespace mlir
#endif // MLIR_SUPPORT_LLVM_H #endif // MLIR_SUPPORT_LLVM_H

View File

@ -86,8 +86,7 @@ private:
DenseMap<const AffineMap *, int> affineMapIds; DenseMap<const AffineMap *, int> affineMapIds;
int nextAffineMapId = 0; int nextAffineMapId = 0;
}; };
} // end anonymous namespace } // end anonymous namespace
// TODO Support visiting other types/instructions when implemented. // TODO Support visiting other types/instructions when implemented.
void ModuleState::visitType(const Type *type) { void ModuleState::visitType(const Type *type) {
@ -235,7 +234,8 @@ void ModulePrinter::print(const Module *module) {
mapAndId.first->print(os); mapAndId.first->print(os);
os << '\n'; os << '\n';
} }
for (auto *fn : module->functionList) print(fn); for (auto *fn : module->functionList)
print(fn);
} }
void ModulePrinter::print(const Attribute *attr) const { void ModulePrinter::print(const Attribute *attr) const {
@ -308,7 +308,8 @@ void ModulePrinter::print(const Type *type) const {
case Type::Kind::Vector: { case Type::Kind::Vector: {
auto *v = cast<VectorType>(type); auto *v = cast<VectorType>(type);
os << "vector<"; os << "vector<";
for (auto dim : v->getShape()) os << dim << 'x'; for (auto dim : v->getShape())
os << dim << 'x';
os << *v->getElementType() << '>'; os << *v->getElementType() << '>';
return; return;
} }
@ -549,7 +550,7 @@ private:
DenseMap<const SSAValue *, unsigned> valueIDs; DenseMap<const SSAValue *, unsigned> valueIDs;
unsigned nextValueID = 0; unsigned nextValueID = 0;
}; };
} // end anonymous namespace } // end anonymous namespace
void FunctionState::printOperation(const Operation *op) { void FunctionState::printOperation(const Operation *op) {
os << " "; os << " ";
@ -632,7 +633,7 @@ private:
void numberValuesInBlock(const BasicBlock *block); void numberValuesInBlock(const BasicBlock *block);
}; };
} // end anonymous namespace } // end anonymous namespace
CFGFunctionPrinter::CFGFunctionPrinter(const CFGFunction *function, CFGFunctionPrinter::CFGFunctionPrinter(const CFGFunction *function,
const ModulePrinter &other) const ModulePrinter &other)
@ -665,7 +666,8 @@ void CFGFunctionPrinter::print() {
printFunctionSignature(getFunction()); printFunctionSignature(getFunction());
os << " {\n"; os << " {\n";
for (auto &block : *function) print(&block); for (auto &block : *function)
print(&block);
os << "}\n\n"; os << "}\n\n";
} }
@ -768,7 +770,7 @@ private:
const MLFunction *function; const MLFunction *function;
int numSpaces; int numSpaces;
}; };
} // end anonymous namespace } // end anonymous namespace
MLFunctionPrinter::MLFunctionPrinter(const MLFunction *function, MLFunctionPrinter::MLFunctionPrinter(const MLFunction *function,
const ModulePrinter &other) const ModulePrinter &other)
@ -843,9 +845,7 @@ void Attribute::print(raw_ostream &os) const {
ModulePrinter(os, state).print(this); ModulePrinter(os, state).print(this);
} }
void Attribute::dump() const { void Attribute::dump() const { print(llvm::errs()); }
print(llvm::errs());
}
void Type::print(raw_ostream &os) const { void Type::print(raw_ostream &os) const {
ModuleState state(getContext()); ModuleState state(getContext());

View File

@ -33,16 +33,16 @@ using namespace mlir;
using namespace llvm; using namespace llvm;
namespace { namespace {
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType*> { struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> {
// Functions are uniqued based on their inputs and results. // Functions are uniqued based on their inputs and results.
using KeyTy = std::pair<ArrayRef<Type*>, ArrayRef<Type*>>; using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>;
using DenseMapInfo<FunctionType*>::getHashValue; using DenseMapInfo<FunctionType *>::getHashValue;
using DenseMapInfo<FunctionType*>::isEqual; using DenseMapInfo<FunctionType *>::isEqual;
static unsigned getHashValue(KeyTy key) { static unsigned getHashValue(KeyTy key) {
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()), return hash_combine(
hash_combine_range(key.second.begin(), hash_combine_range(key.first.begin(), key.first.end()),
key.second.end())); hash_combine_range(key.second.begin(), key.second.end()));
} }
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) { static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
@ -75,16 +75,16 @@ struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
} }
}; };
struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> { struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> {
// Vectors are uniqued based on their element type and shape. // Vectors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type*, ArrayRef<unsigned>>; using KeyTy = std::pair<Type *, ArrayRef<unsigned>>;
using DenseMapInfo<VectorType*>::getHashValue; using DenseMapInfo<VectorType *>::getHashValue;
using DenseMapInfo<VectorType*>::isEqual; using DenseMapInfo<VectorType *>::isEqual;
static unsigned getHashValue(KeyTy key) { static unsigned getHashValue(KeyTy key) {
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), return hash_combine(
hash_combine_range(key.second.begin(), DenseMapInfo<Type *>::getHashValue(key.first),
key.second.end())); hash_combine_range(key.second.begin(), key.second.end()));
} }
static bool isEqual(const KeyTy &lhs, const VectorType *rhs) { static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
@ -94,16 +94,16 @@ struct VectorTypeKeyInfo : DenseMapInfo<VectorType*> {
} }
}; };
struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> { struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> {
// Ranked tensors are uniqued based on their element type and shape. // Ranked tensors are uniqued based on their element type and shape.
using KeyTy = std::pair<Type*, ArrayRef<int>>; using KeyTy = std::pair<Type *, ArrayRef<int>>;
using DenseMapInfo<RankedTensorType*>::getHashValue; using DenseMapInfo<RankedTensorType *>::getHashValue;
using DenseMapInfo<RankedTensorType*>::isEqual; using DenseMapInfo<RankedTensorType *>::isEqual;
static unsigned getHashValue(KeyTy key) { static unsigned getHashValue(KeyTy key) {
return hash_combine(DenseMapInfo<Type*>::getHashValue(key.first), return hash_combine(
hash_combine_range(key.second.begin(), DenseMapInfo<Type *>::getHashValue(key.first),
key.second.end())); hash_combine_range(key.second.begin(), key.second.end()));
} }
static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) { static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
@ -113,17 +113,17 @@ struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType*> {
} }
}; };
struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType*> { struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> {
// MemRefs are uniqued based on their element type, shape, affine map // MemRefs are uniqued based on their element type, shape, affine map
// composition, and memory space. // composition, and memory space.
using KeyTy = std::tuple<Type*, ArrayRef<int>, ArrayRef<AffineMap*>, using KeyTy =
unsigned>; std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>;
using DenseMapInfo<MemRefType*>::getHashValue; using DenseMapInfo<MemRefType *>::getHashValue;
using DenseMapInfo<MemRefType*>::isEqual; using DenseMapInfo<MemRefType *>::isEqual;
static unsigned getHashValue(KeyTy key) { static unsigned getHashValue(KeyTy key) {
return hash_combine( return hash_combine(
DenseMapInfo<Type*>::getHashValue(std::get<0>(key)), DenseMapInfo<Type *>::getHashValue(std::get<0>(key)),
hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()), hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()), hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
std::get<3>(key)); std::get<3>(key));
@ -137,11 +137,11 @@ struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType*> {
} }
}; };
struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr*> { struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> {
// Array attributes are uniqued based on their elements. // Array attributes are uniqued based on their elements.
using KeyTy = ArrayRef<Attribute*>; using KeyTy = ArrayRef<Attribute *>;
using DenseMapInfo<ArrayAttr*>::getHashValue; using DenseMapInfo<ArrayAttr *>::getHashValue;
using DenseMapInfo<ArrayAttr*>::isEqual; using DenseMapInfo<ArrayAttr *>::isEqual;
static unsigned getHashValue(KeyTy key) { static unsigned getHashValue(KeyTy key) {
return hash_combine_range(key.begin(), key.end()); return hash_combine_range(key.begin(), key.end());
@ -173,7 +173,6 @@ struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
} // end anonymous namespace. } // end anonymous namespace.
namespace mlir { namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom. /// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public. /// This class is completely private to this file, so everything is public.
@ -186,10 +185,11 @@ public:
OperationSet operationSet; OperationSet operationSet;
/// These are identifiers uniqued into this MLIRContext. /// These are identifiers uniqued into this MLIRContext.
llvm::StringMap<char, llvm::BumpPtrAllocator&> identifiers; llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
// Primitive type uniquing. // Primitive type uniquing.
PrimitiveType *primitives[int(Type::Kind::LAST_PRIMITIVE_TYPE)+1] = {nullptr}; PrimitiveType *primitives[int(Type::Kind::LAST_PRIMITIVE_TYPE) + 1] = {
nullptr};
// Affine map uniquing. // Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>; using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
@ -201,36 +201,36 @@ public:
affineExprs; affineExprs;
/// Integer type uniquing. /// Integer type uniquing.
DenseMap<unsigned, IntegerType*> integers; DenseMap<unsigned, IntegerType *> integers;
/// Function type uniquing. /// Function type uniquing.
using FunctionTypeSet = DenseSet<FunctionType*, FunctionTypeKeyInfo>; using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
FunctionTypeSet functions; FunctionTypeSet functions;
/// Vector type uniquing. /// Vector type uniquing.
using VectorTypeSet = DenseSet<VectorType*, VectorTypeKeyInfo>; using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>;
VectorTypeSet vectors; VectorTypeSet vectors;
/// Ranked tensor type uniquing. /// Ranked tensor type uniquing.
using RankedTensorTypeSet = DenseSet<RankedTensorType*, using RankedTensorTypeSet =
RankedTensorTypeKeyInfo>; DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>;
RankedTensorTypeSet rankedTensors; RankedTensorTypeSet rankedTensors;
/// Unranked tensor type uniquing. /// Unranked tensor type uniquing.
DenseMap<Type*, UnrankedTensorType*> unrankedTensors; DenseMap<Type *, UnrankedTensorType *> unrankedTensors;
/// MemRef type uniquing. /// MemRef type uniquing.
using MemRefTypeSet = DenseSet<MemRefType*, MemRefTypeKeyInfo>; using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>;
MemRefTypeSet memrefs; MemRefTypeSet memrefs;
// Attribute uniquing. // Attribute uniquing.
BoolAttr *boolAttrs[2] = { nullptr }; BoolAttr *boolAttrs[2] = {nullptr};
DenseMap<int64_t, IntegerAttr*> integerAttrs; DenseMap<int64_t, IntegerAttr *> integerAttrs;
DenseMap<int64_t, FloatAttr*> floatAttrs; DenseMap<int64_t, FloatAttr *> floatAttrs;
StringMap<StringAttr*> stringAttrs; StringMap<StringAttr *> stringAttrs;
using ArrayAttrSet = DenseSet<ArrayAttr*, ArrayAttrKeyInfo>; using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>;
ArrayAttrSet arrayAttrs; ArrayAttrSet arrayAttrs;
DenseMap<AffineMap*, AffineMapAttr*> affineMapAttrs; DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs;
using AttributeListSet = using AttributeListSet =
DenseSet<AttributeListStorage *, AttributeListKeyInfo>; DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
AttributeListSet attributeLists; AttributeListSet attributeLists;
@ -242,8 +242,7 @@ public:
/// Copy the specified array of elements into memory managed by our bump /// Copy the specified array of elements into memory managed by our bump
/// pointer allocator. This assumes the elements are all PODs. /// pointer allocator. This assumes the elements are all PODs.
template<typename T> template <typename T> ArrayRef<T> copyInto(ArrayRef<T> elements) {
ArrayRef<T> copyInto(ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size()); auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result); std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size()); return ArrayRef<T>(result, elements.size());
@ -251,11 +250,9 @@ public:
}; };
} // end namespace mlir } // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) { MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {}
}
MLIRContext::~MLIRContext() { MLIRContext::~MLIRContext() {}
}
/// Return the operation set associated with the specified MLIRContext object. /// Return the operation set associated with the specified MLIRContext object.
OperationSet &OperationSet::get(MLIRContext *context) { OperationSet &OperationSet::get(MLIRContext *context) {
@ -301,7 +298,7 @@ PrimitiveType *PrimitiveType::get(Kind kind, MLIRContext *context) {
auto *ptr = impl.allocator.Allocate<PrimitiveType>(); auto *ptr = impl.allocator.Allocate<PrimitiveType>();
// Initialize the memory using placement new. // Initialize the memory using placement new.
new(ptr) PrimitiveType(kind, context); new (ptr) PrimitiveType(kind, context);
// Cache and return it. // Cache and return it.
return impl.primitives[(int)kind] = ptr; return impl.primitives[(int)kind] = ptr;
@ -319,7 +316,8 @@ IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
return result; return result;
} }
FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results, FunctionType *FunctionType::get(ArrayRef<Type *> inputs,
ArrayRef<Type *> results,
MLIRContext *context) { MLIRContext *context) {
auto &impl = context->getImpl(); auto &impl = context->getImpl();
@ -335,15 +333,15 @@ FunctionType *FunctionType::get(ArrayRef<Type*> inputs, ArrayRef<Type*> results,
auto *result = impl.allocator.Allocate<FunctionType>(); auto *result = impl.allocator.Allocate<FunctionType>();
// Copy the inputs and results into the bump pointer. // Copy the inputs and results into the bump pointer.
SmallVector<Type*, 16> types; SmallVector<Type *, 16> types;
types.reserve(inputs.size()+results.size()); types.reserve(inputs.size() + results.size());
types.append(inputs.begin(), inputs.end()); types.append(inputs.begin(), inputs.end());
types.append(results.begin(), results.end()); types.append(results.begin(), results.end());
auto typesList = impl.copyInto(ArrayRef<Type*>(types)); auto typesList = impl.copyInto(ArrayRef<Type *>(types));
// Initialize the memory using placement new. // Initialize the memory using placement new.
new (result) FunctionType(typesList.data(), inputs.size(), results.size(), new (result)
context); FunctionType(typesList.data(), inputs.size(), results.size(), context);
// Cache and return it. // Cache and return it.
return *existing.first = result; return *existing.first = result;
@ -378,9 +376,8 @@ VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
return *existing.first = result; return *existing.first = result;
} }
TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context) TensorType::TensorType(Kind kind, Type *elementType, MLIRContext *context)
: Type(kind, context), elementType(elementType) { : Type(kind, context), elementType(elementType) {
assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType) || assert((isa<PrimitiveType>(elementType) || isa<VectorType>(elementType) ||
isa<IntegerType>(elementType)) && isa<IntegerType>(elementType)) &&
"tensor elements must be primitives or vectors"); "tensor elements must be primitives or vectors");
@ -433,14 +430,14 @@ UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
} }
MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType, MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
ArrayRef<AffineMap*> affineMapComposition, ArrayRef<AffineMap *> affineMapComposition,
unsigned memorySpace) { unsigned memorySpace) {
auto *context = elementType->getContext(); auto *context = elementType->getContext();
auto &impl = context->getImpl(); auto &impl = context->getImpl();
// Look to see if we already have this memref type. // Look to see if we already have this memref type.
auto key = std::make_tuple(elementType, shape, affineMapComposition, auto key =
memorySpace); std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
auto existing = impl.memrefs.insert_as(nullptr, key); auto existing = impl.memrefs.insert_as(nullptr, key);
// If we already have it, return that value. // If we already have it, return that value.
@ -455,8 +452,8 @@ MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
// Copy the affine map composition into the bump pointer. // Copy the affine map composition into the bump pointer.
// TODO(andydavis) Assert that the structure of the composition is valid. // TODO(andydavis) Assert that the structure of the composition is valid.
affineMapComposition = impl.copyInto(ArrayRef<AffineMap*>( affineMapComposition =
affineMapComposition)); impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition));
// Initialize the memory using placement new. // Initialize the memory using placement new.
new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace, new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace,
@ -519,7 +516,7 @@ StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
return result; return result;
} }
ArrayAttr *ArrayAttr::get(ArrayRef<Attribute*> value, MLIRContext *context) { ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) {
auto &impl = context->getImpl(); auto &impl = context->getImpl();
// Look to see if we already have this. // Look to see if we already have this.
@ -542,7 +539,7 @@ ArrayAttr *ArrayAttr::get(ArrayRef<Attribute*> value, MLIRContext *context) {
return *existing.first = result; return *existing.first = result;
} }
AffineMapAttr *AffineMapAttr::get(AffineMap* value, MLIRContext *context) { AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) {
auto *&result = context->getImpl().affineMapAttrs[value]; auto *&result = context->getImpl().affineMapAttrs[value];
if (result) if (result)
return result; return result;