[llvm-mca] Correctly set the ReadAdvance information for register use operands.

The tool was passing the wrong operand index to method
MCSubtargetInfo::getReadAdvanceCycles(). That method requires a "UseIdx", and
not the operand index. This was found when testing X86 code where instructions
had a memory folded operand.

This patch fixes the issue and adds test read-advance-1.s to ensure that
the ReadAfterLd (a ReadAdvance of 3cy) information is correctly used.

llvm-svn: 328790
This commit is contained in:
Andrea Di Biagio 2018-03-29 14:26:56 +00:00
parent fe1d346f99
commit 0a837ef6b1
7 changed files with 133 additions and 37 deletions

View File

@ -0,0 +1,46 @@
# RUN: llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=1 -timeline -resource-pressure=false < %s | FileCheck %s
# The vmul can start executing 3cy in advance. That is beause the first use
# operand (i.e. %xmm1) is a ReadAfterLd. That means, the memory operand is
# evaluated before %xmm1.
vaddps %xmm0, %xmm0, %xmm1
vmulps (%rdi), %xmm1, %xmm2
# CHECK: Iterations: 1
# CHECK-NEXT: Instructions: 2
# CHECK-NEXT: Total Cycles: 10
# CHECK-NEXT: Dispatch Width: 2
# CHECK: Instruction Info:
# CHECK-NEXT: [1]: #uOps
# CHECK-NEXT: [2]: Latency
# CHECK-NEXT: [3]: RThroughput
# CHECK-NEXT: [4]: MayLoad
# CHECK-NEXT: [5]: MayStore
# CHECK-NEXT: [6]: HasSideEffects
# CHECK: [1] [2] [3] [4] [5] [6] Instructions:
# CHECK-NEXT: 1 3 1.00 vaddps %xmm0, %xmm0, %xmm1
# CHECK-NEXT: 1 7 1.00 * vmulps (%rdi), %xmm1, %xmm2
# CHECK: Timeline view:
# CHECK: Index 0123456789
# CHECK: [0,0] DeeeER . vaddps %xmm0, %xmm0, %xmm1
# CHECK-NEXT: [0,1] DeeeeeeeER vmulps (%rdi), %xmm1, %xmm2
# CHECK: Average Wait times (based on the timeline view):
# CHECK-NEXT: [0]: Executions
# CHECK-NEXT: [1]: Average time spent waiting in a scheduler's queue
# CHECK-NEXT: [2]: Average time spent waiting in a scheduler's queue while ready
# CHECK-NEXT: [3]: Average time elapsed from WB until retire stage
# CHECK: [0] [1] [2] [3]
# CHECK-NEXT: 0. 1 1.0 1.0 0.0 vaddps %xmm0, %xmm0, %xmm1
# CHECK-NEXT: 1. 1 1.0 0.0 0.0 vmulps (%rdi), %xmm1, %xmm2

View File

@ -343,7 +343,7 @@ void DispatchUnit::updateRAWDependencies(ReadState &RS,
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteState *WS : DependentWrites) {
unsigned WriteResID = WS->getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.OpIndex, WriteResID);
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS->addUser(&RS, ReadAdvance);
}
// Prepare the set for another round.

View File

@ -340,6 +340,7 @@ static void populateReads(InstrDesc &ID, const MCInst &MCI,
for (unsigned CurrentUse = 0; CurrentUse < NumExplicitUses; ++CurrentUse) {
ReadDescriptor &Read = ID.Reads[CurrentUse];
Read.OpIndex = i + CurrentUse;
Read.UseIndex = CurrentUse;
Read.HasReadAdvanceEntries = HasReadAdvanceEntries;
Read.SchedClassID = SchedClassID;
DEBUG(dbgs() << "\t\tOpIdx=" << Read.OpIndex);
@ -348,6 +349,7 @@ static void populateReads(InstrDesc &ID, const MCInst &MCI,
for (unsigned CurrentUse = 0; CurrentUse < NumImplicitUses; ++CurrentUse) {
ReadDescriptor &Read = ID.Reads[NumExplicitUses + CurrentUse];
Read.OpIndex = -1;
Read.UseIndex = -1;
Read.RegisterID = MCDesc.getImplicitUses()[CurrentUse];
Read.HasReadAdvanceEntries = false;
Read.SchedClassID = SchedClassID;

View File

@ -98,9 +98,7 @@ void Instruction::dispatch(unsigned RCUToken) {
RCUTokenID = RCUToken;
// Check if input operands are already available.
if (std::all_of(Uses.begin(), Uses.end(),
[](const UniqueUse &Use) { return Use->isReady(); }))
Stage = IS_READY;
update();
}
void Instruction::execute() {
@ -122,19 +120,22 @@ bool Instruction::isZeroLatency() const {
return Desc.MaxLatency == 0 && Defs.size() == 0 && Uses.size() == 0;
}
void Instruction::update() {
if (!isDispatched())
return;
if (llvm::all_of(Uses, [](const UniqueUse &Use) { return Use->isReady(); }))
Stage = IS_READY;
}
void Instruction::cycleEvent() {
if (isReady())
return;
if (isDispatched()) {
bool IsReady = true;
for (UniqueUse &Use : Uses) {
for (UniqueUse &Use : Uses)
Use->cycleEvent();
IsReady &= Use->isReady();
}
if (IsReady)
Stage = IS_READY;
update();
return;
}

View File

@ -60,8 +60,12 @@ struct WriteDescriptor {
/// \brief A register read descriptor.
struct ReadDescriptor {
// This field defaults to -1 if this is an implicit read.
// A MCOperand index. This is used by the Dispatch logic to identify register
// reads. This field defaults to -1 if this is an implicit read.
int OpIndex;
// The actual "UseIdx". This field defaults to -1 if this is an implicit read.
// This is used by the scheduler to solve ReadAdvance queries.
int UseIndex;
// This field is only set if this is an implicit read.
unsigned RegisterID;
// Scheduling Class Index. It is used to query the scheduling model for the
@ -296,6 +300,14 @@ public:
// all the definitions.
void execute();
// Force a transition from the IS_AVAILABLE state to the IS_READY state if
// input operands are all ready. State transitions normally occur at the
// beginning of a new cycle (see method cycleEvent()). However, the scheduler
// may decide to promote instructions from the wait queue to the ready queue
// as the result of another issue event. This method is called every time the
// instruction might have changed in state.
void update();
bool isDispatched() const { return Stage == IS_AVAILABLE; }
bool isReady() const { return Stage == IS_READY; }
bool isExecuting() const { return Stage == IS_EXECUTING; }

View File

@ -293,7 +293,10 @@ void Scheduler::cycleEvent(unsigned /* unused */) {
updateIssuedQueue();
updatePendingQueue();
issue();
bool InstructionsWerePromoted = false;
do {
InstructionsWerePromoted = issue();
} while(InstructionsWerePromoted);
}
#ifndef NDEBUG
@ -357,7 +360,40 @@ void Scheduler::issueInstruction(Instruction &IS, unsigned InstrIndex) {
notifyInstructionExecuted(InstrIndex);
}
void Scheduler::issue() {
bool Scheduler::promoteToReadyQueue() {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
bool InstructionsWerePromoted = false;
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const QueueEntryTy &Entry = *I;
// Check if this instruction is now ready. In case, force
// a transition in state using method 'update()'.
Entry.second->update();
bool IsReady = Entry.second->isReady();
const InstrDesc &Desc = Entry.second->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
if (IsReady && IsMemOp)
IsReady &= LSU->isReady(Entry.first);
if (IsReady) {
notifyInstructionReady(Entry.first);
ReadyQueue[Entry.first] = Entry.second;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
InstructionsWerePromoted = true;
} else {
++I;
}
}
return InstructionsWerePromoted;
}
bool Scheduler::issue() {
std::vector<unsigned> ToRemove;
for (const QueueEntryTy QueueEntry : ReadyQueue) {
// Give priority to older instructions in ReadyQueue. The ready queue is
@ -371,33 +407,27 @@ void Scheduler::issue() {
ToRemove.emplace_back(InstrIndex);
}
if (ToRemove.empty())
return false;
for (const unsigned InstrIndex : ToRemove)
ReadyQueue.erase(InstrIndex);
// Instructions that have been issued during this cycle might have unblocked
// other dependent instructions. Dependent instructions
// may be issued during this same cycle if operands have ReadAdvance entries.
// Promote those instructions to the ReadyQueue and tell to the caller that
// we need another round of 'issue()'.
return promoteToReadyQueue();
}
void Scheduler::updatePendingQueue() {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
// Notify to instructions in the pending queue that a new cycle just
// started.
for (QueueEntryTy Entry : WaitQueue)
Entry.second->cycleEvent();
const InstrDesc &Desc = Entry.second->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
bool IsReady = Entry.second->isReady();
if (IsReady && IsMemOp)
IsReady &= LSU->isReady(Entry.first);
if (IsReady) {
notifyInstructionReady(Entry.first);
ReadyQueue[Entry.first] = Entry.second;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
} else {
++I;
}
}
promoteToReadyQueue();
}
void Scheduler::updateIssuedQueue() {

View File

@ -430,9 +430,14 @@ class Scheduler {
// Notify the Backend that buffered resources were freed.
void notifyReleasedBuffers(llvm::ArrayRef<uint64_t> Buffers);
/// Issue instructions from the ready queue by giving priority to older
/// instructions.
void issue();
/// Issue instructions from the ReadyQueue by giving priority to older
/// instructions. This method returns true if at least one instruction has
/// been promoted in the process from the WaitQueue to the ReadyQueue.
bool issue();
/// Scans the WaitQueue in search of instructions that can be moved to
/// the ReadyQueue.
bool promoteToReadyQueue();
/// Issue an instruction without updating the ready queue.
void issueInstruction(Instruction &IS, unsigned InstrIndex);