forked from OSchip/llvm-project
Pass for outlining gpu.launch operation bodies into kernel functions called by gpu.launch_func operations.
-- PiperOrigin-RevId: 247564213
This commit is contained in:
parent
051925bd34
commit
0a21ab70fa
|
@ -141,10 +141,8 @@ Example:
|
|||
func @kernel_1(%arg0 : f32, %arg1 : !llvm<"float*">)
|
||||
attributes { nvvm.kernel: true } {
|
||||
|
||||
// Operations that produce block/thread IDs and dimensions will be injected
|
||||
// when outlining the `gpu.launch` body to a function called by
|
||||
// `gpu.launch_func`.
|
||||
// TODO(tjoerg): Implement gpu.launch body outlining.
|
||||
// Operations that produce block/thread IDs and dimensions are injected when
|
||||
// outlining the `gpu.launch` body to a function called by `gpu.launch_func`.
|
||||
%tIdX = "gpu.thread_id"() {dimension: "x"} : () -> (index)
|
||||
%tIdY = "gpu.thread_id"() {dimension: "y"} : () -> (index)
|
||||
%tIdZ = "gpu.thread_id"() {dimension: "z"} : () -> (index)
|
||||
|
|
|
@ -75,6 +75,10 @@ public:
|
|||
KernelDim3 getGridSize();
|
||||
/// Get the SSA values corresponding to kernel block size.
|
||||
KernelDim3 getBlockSize();
|
||||
/// Append the operand values passed as kernel arguments to `out`.
|
||||
void getKernelOperandValues(SmallVectorImpl<Value *> *out);
|
||||
/// Append the operand types passed as kernel arguments to `out`.
|
||||
void getKernelOperandTypes(SmallVectorImpl<Type> *out);
|
||||
|
||||
LogicalResult verify();
|
||||
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
//===- Passes.h - Pass Entrypoints ------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Copyright 2019 The MLIR Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// =============================================================================
|
||||
//
|
||||
// This header file defines prototypes that expose pass constructors.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_GPU_PASSES_H_
|
||||
#define MLIR_GPU_PASSES_H_
|
||||
|
||||
namespace mlir {
|
||||
|
||||
class ModulePassBase;
|
||||
|
||||
ModulePassBase *createGpuKernelOutliningPass();
|
||||
|
||||
} // namespace mlir
|
||||
|
||||
#endif // MLIR_GPU_PASSES_H_
|
|
@ -94,6 +94,20 @@ KernelDim3 LaunchOp::getBlockSize() {
|
|||
return KernelDim3{args[9], args[10], args[11]};
|
||||
}
|
||||
|
||||
void LaunchOp::getKernelOperandValues(SmallVectorImpl<Value *> *out) {
|
||||
out->reserve(getNumOperands() - kNumConfigOperands + out->size());
|
||||
for (int i = kNumConfigOperands; i < getNumOperands(); ++i) {
|
||||
out->push_back(getOperand(i));
|
||||
}
|
||||
}
|
||||
|
||||
void LaunchOp::getKernelOperandTypes(SmallVectorImpl<Type> *out) {
|
||||
out->reserve(getNumOperands() - kNumConfigOperands + out->size());
|
||||
for (int i = kNumConfigOperands; i < getNumOperands(); ++i) {
|
||||
out->push_back(getOperand(i)->getType());
|
||||
}
|
||||
}
|
||||
|
||||
LogicalResult LaunchOp::verify() {
|
||||
// Kernel launch takes kNumConfigOperands leading operands for grid/block
|
||||
// sizes and transforms them into kNumConfigRegionAttributes region arguments
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
//===- KernelOutlining.cpp - Implementation of GPU kernel outling ---------===//
|
||||
//
|
||||
// Copyright 2019 The MLIR Authors.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
// =============================================================================
|
||||
//
|
||||
// This file implements the GPU dialect kernel outlining pass.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/GPU/GPUDialect.h"
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "mlir/StandardOps/Ops.h"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename OpTy>
|
||||
void createForAllDimensions(FuncBuilder &builder, Location loc,
|
||||
SmallVectorImpl<Value *> *values) {
|
||||
for (string dim : {"x", "y", "z"}) {
|
||||
Value *v = builder.create<OpTy>(loc, builder.getIndexType(),
|
||||
builder.getStringAttr(dim));
|
||||
values->push_back(v);
|
||||
}
|
||||
}
|
||||
|
||||
// Add operations generating block/thread ids and gird/block dimensions at the
|
||||
// beginning of `kernelFunc` and replace uses of the respective function args.
|
||||
void injectGpuIndexOperations(Module &module, Location loc,
|
||||
Function *kernelFunc) {
|
||||
Builder builder(&module);
|
||||
FuncBuilder funcBuilder(kernelFunc);
|
||||
SmallVector<Value *, 12> indexOps;
|
||||
createForAllDimensions<gpu::BlockId>(funcBuilder, loc, &indexOps);
|
||||
createForAllDimensions<gpu::ThreadId>(funcBuilder, loc, &indexOps);
|
||||
createForAllDimensions<gpu::GridDim>(funcBuilder, loc, &indexOps);
|
||||
createForAllDimensions<gpu::BlockDim>(funcBuilder, loc, &indexOps);
|
||||
// Replace the leading 12 function args with the respective thread/block index
|
||||
// operations. Iterate backwards since args are erased and indices change.
|
||||
for (int i = 11; i >= 0; --i) {
|
||||
auto &firstBlock = kernelFunc->getBody().getBlocks().front();
|
||||
firstBlock.getArgument(i)->replaceAllUsesWith(indexOps[i]);
|
||||
firstBlock.eraseArgument(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Outline the `gpu.launch` operation body into a kernel function.
|
||||
Function *outlineKernelFunc(Module &module, gpu::LaunchOp &launchOp) {
|
||||
Location loc = launchOp.getLoc();
|
||||
SmallVector<Type, 4> kernelOperandTypes;
|
||||
launchOp.getKernelOperandTypes(&kernelOperandTypes);
|
||||
FunctionType type =
|
||||
FunctionType::get(kernelOperandTypes, {}, module.getContext());
|
||||
string kernelFuncName =
|
||||
Twine(launchOp.getOperation()->getFunction()->getName(), "_kernel").str();
|
||||
mlir::BlockAndValueMapping mapper;
|
||||
Function *outlinedFunc = new mlir::Function(loc, kernelFuncName, type);
|
||||
outlinedFunc->getBody().takeBody(launchOp.getBody());
|
||||
injectGpuIndexOperations(module, loc, outlinedFunc);
|
||||
module.getFunctions().push_back(outlinedFunc);
|
||||
return outlinedFunc;
|
||||
}
|
||||
|
||||
// Replace `gpu.launch` operations with an `gpu.launch_func` operation launching
|
||||
// `kernelFunc`.
|
||||
void convertToLaunchFuncOp(gpu::LaunchOp &launchOp, Function *kernelFunc) {
|
||||
Location loc = launchOp.getLoc();
|
||||
FuncBuilder funcBuilder(launchOp);
|
||||
SmallVector<Value *, 4> kernelOperandValues;
|
||||
launchOp.getKernelOperandValues(&kernelOperandValues);
|
||||
// TODO(tjoerg): Pass KernelDims rather than individual values.
|
||||
funcBuilder.create<gpu::LaunchFuncOp>(
|
||||
loc, kernelFunc, launchOp.getOperand(0), launchOp.getOperand(1),
|
||||
launchOp.getOperand(2), launchOp.getOperand(3), launchOp.getOperand(4),
|
||||
launchOp.getOperand(5), kernelOperandValues);
|
||||
launchOp.erase();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
class GpuKernelOutliningPass : public ModulePass<GpuKernelOutliningPass> {
|
||||
public:
|
||||
void runOnModule() override {
|
||||
for (auto &func : getModule()) {
|
||||
func.walk<mlir::gpu::LaunchOp>([&](mlir::gpu::LaunchOp op) {
|
||||
Function *outlinedFunc = outlineKernelFunc(getModule(), op);
|
||||
convertToLaunchFuncOp(op, outlinedFunc);
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
ModulePassBase *createGpuKernelOutliningPass() {
|
||||
return new GpuKernelOutliningPass();
|
||||
}
|
||||
|
||||
static PassRegistration<GpuKernelOutliningPass>
|
||||
pass("gpu-kernel-outlining",
|
||||
"Outline gpu.launch bodies to kernel functions.");
|
|
@ -0,0 +1,62 @@
|
|||
// RUN: mlir-opt -gpu-kernel-outlining -split-input-file %s | FileCheck %s
|
||||
|
||||
func @launch() {
|
||||
%0 = "op"() : () -> (f32)
|
||||
%1 = "op"() : () -> (memref<?xf32, 1>)
|
||||
%cst = constant 8 : index
|
||||
|
||||
// CHECK: "gpu.launch_func"(%c8, %c8, %c8, %c8, %c8, %c8, %0, %1) {kernel: @launch_kernel : (f32, memref<?xf32, 1>) -> ()} : (index, index, index, index, index, index, f32, memref<?xf32, 1>) -> ()
|
||||
// CHECK-NOT: gpu.launch blocks
|
||||
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,
|
||||
%grid_z = %cst)
|
||||
threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,
|
||||
%block_z = %cst)
|
||||
args(%arg0 = %0, %arg1 = %1) : f32, memref<?xf32, 1> {
|
||||
"use"(%arg0): (f32) -> ()
|
||||
"some_op"(%bx, %block_x) : (index, index) -> ()
|
||||
%42 = load %arg1[%tx] : memref<?xf32, 1>
|
||||
return
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: func @launch_kernel(%arg0: f32, %arg1: memref<?xf32, 1>)
|
||||
// CHECK-NEXT: %0 = "gpu.block_id"() {dimension: "x"} : () -> index
|
||||
// CHECK-NEXT: %1 = "gpu.block_id"() {dimension: "y"} : () -> index
|
||||
// CHECK-NEXT: %2 = "gpu.block_id"() {dimension: "z"} : () -> index
|
||||
// CHECK-NEXT: %3 = "gpu.thread_id"() {dimension: "x"} : () -> index
|
||||
// CHECK-NEXT: %4 = "gpu.thread_id"() {dimension: "y"} : () -> index
|
||||
// CHECK-NEXT: %5 = "gpu.thread_id"() {dimension: "z"} : () -> index
|
||||
// CHECK-NEXT: %6 = "gpu.grid_dim"() {dimension: "x"} : () -> index
|
||||
// CHECK-NEXT: %7 = "gpu.grid_dim"() {dimension: "y"} : () -> index
|
||||
// CHECK-NEXT: %8 = "gpu.grid_dim"() {dimension: "z"} : () -> index
|
||||
// CHECK-NEXT: %9 = "gpu.block_dim"() {dimension: "x"} : () -> index
|
||||
// CHECK-NEXT: %10 = "gpu.block_dim"() {dimension: "y"} : () -> index
|
||||
// CHECK-NEXT: %11 = "gpu.block_dim"() {dimension: "z"} : () -> index
|
||||
// CHECK-NEXT: "use"(%arg0) : (f32) -> ()
|
||||
// CHECK-NEXT: "some_op"(%0, %9) : (index, index) -> ()
|
||||
// CHECK-NEXT: %12 = load %arg1[%3] : memref<?xf32, 1>
|
||||
|
||||
// -----
|
||||
|
||||
func @multiple_launches() {
|
||||
%cst = constant 8 : index
|
||||
// CHECK: "gpu.launch_func"(%c8, %c8, %c8, %c8, %c8, %c8) {kernel: @multiple_launches_kernel : () -> ()} : (index, index, index, index, index, index) -> ()
|
||||
gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,
|
||||
%grid_z = %cst)
|
||||
threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,
|
||||
%block_z = %cst) {
|
||||
return
|
||||
}
|
||||
// CHECK: "gpu.launch_func"(%c8, %c8, %c8, %c8, %c8, %c8) {kernel: @multiple_launches_kernel_0 : () -> ()} : (index, index, index, index, index, index) -> ()
|
||||
gpu.launch blocks(%bx2, %by2, %bz2) in (%grid_x2 = %cst, %grid_y2 = %cst,
|
||||
%grid_z2 = %cst)
|
||||
threads(%tx2, %ty2, %tz2) in (%block_x2 = %cst, %block_y2 = %cst,
|
||||
%block_z2 = %cst) {
|
||||
return
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// CHECK: func @multiple_launches_kernel()
|
||||
// CHECK: func @multiple_launches_kernel_0()
|
Loading…
Reference in New Issue