Pass scope and LoopInfo to SCEVValidator. NFC.

The scope will be required in the following fix. This commit separates
the large changes that do not change behaviour from the small, but
functional change.

llvm-svn: 262664
This commit is contained in:
Michael Kruse 2016-03-03 22:10:47 +00:00
parent 6ad7b5aff2
commit 09eb4451d2
8 changed files with 67 additions and 48 deletions

View File

@ -438,9 +438,10 @@ private:
/// non-affine.
///
/// @param S The expression to be checked.
/// @param Scope The loop nest in which @p S is used.
/// @param Context The context of scop detection.
/// @param BaseAddress The base address of the expression @p S (if any).
bool isAffine(const SCEV *S, DetectionContext &Context,
bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context,
Value *BaseAddress = nullptr) const;
/// @brief Check if the control flow in a basic block is valid.
@ -516,6 +517,9 @@ public:
/// This was added to give the DOT printer easy access to this information.
RegionInfo *getRI() const { return RI; }
/// @brief Get the LoopInfo stored in this pass.
LoopInfo *getLI() const { return LI; }
/// @brief Is the region is the maximum region of a Scop?
///
/// @param R The Region to test if it is maximum.

View File

@ -1411,7 +1411,7 @@ private:
InvariantEquivClassesTy InvariantEquivClasses;
/// @brief Scop constructor; invoked from ScopInfo::buildScop.
Scop(Region &R, ScalarEvolution &SE, unsigned MaxLoopDepth);
Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, unsigned MaxLoopDepth);
/// @brief Get or create the access function set in a BasicBlock
AccFuncSetType &getOrCreateAccessFunctions(const BasicBlock *BB) {

View File

@ -46,7 +46,7 @@ class ScopStmt;
/// Translate a SCEV to an isl_pw_aff.
struct SCEVAffinator : public llvm::SCEVVisitor<SCEVAffinator, isl_pw_aff *> {
public:
SCEVAffinator(Scop *S);
SCEVAffinator(Scop *S, llvm::LoopInfo &LI);
~SCEVAffinator();
/// @brief Translate a SCEV to an isl_pw_aff.
@ -81,6 +81,7 @@ private:
unsigned NumIterators;
const llvm::Region &R;
llvm::ScalarEvolution &SE;
llvm::LoopInfo &LI;
llvm::BasicBlock *BB;
/// @brief Target data for element size computing.

View File

@ -51,19 +51,20 @@ void findValues(const llvm::SCEV *Expr, llvm::SetVector<llvm::Value *> &Values);
/// region count as dependence.
bool hasScalarDepsInsideRegion(const llvm::SCEV *S, const llvm::Region *R,
llvm::Loop *Scope, bool AllowLoops);
bool isAffineExpr(const llvm::Region *R, const llvm::SCEV *Expression,
llvm::ScalarEvolution &SE, const llvm::Value *BaseAddress = 0,
bool isAffineExpr(const llvm::Region *R, llvm::Loop *Scope,
const llvm::SCEV *Expression, llvm::ScalarEvolution &SE,
const llvm::Value *BaseAddress = 0,
InvariantLoadsSetTy *ILS = nullptr);
/// @brief Check if @p V describes an affine parameter constraint in @p R.
bool isAffineParamConstraint(llvm::Value *V, const llvm::Region *R,
llvm::ScalarEvolution &SE,
llvm::Loop *Scope, llvm::ScalarEvolution &SE,
std::vector<const llvm::SCEV *> &Params,
bool OrExpr = false);
std::vector<const llvm::SCEV *>
getParamsInAffineExpr(const llvm::Region *R, const llvm::SCEV *Expression,
llvm::ScalarEvolution &SE,
getParamsInAffineExpr(const llvm::Region *R, llvm::Loop *Scope,
const llvm::SCEV *Expression, llvm::ScalarEvolution &SE,
const llvm::Value *BaseAddress = 0);
/// @brief Extract the constant factors from the multiplication @p M.

View File

@ -322,11 +322,12 @@ bool ScopDetection::onlyValidRequiredInvariantLoads(
return true;
}
bool ScopDetection::isAffine(const SCEV *S, DetectionContext &Context,
bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
DetectionContext &Context,
Value *BaseAddress) const {
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&Context.CurRegion, S, *SE, BaseAddress, &AccessILS))
if (!isAffineExpr(&Context.CurRegion, Scope, S, *SE, BaseAddress, &AccessILS))
return false;
if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
@ -341,7 +342,7 @@ bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
Loop *L = LI->getLoopFor(&BB);
const SCEV *ConditionSCEV = SE->getSCEVAtScope(Condition, L);
if (isAffine(ConditionSCEV, Context))
if (isAffine(ConditionSCEV, L, Context))
return true;
if (!IsLoopBranch && AllowNonAffineSubRegions &&
@ -401,7 +402,7 @@ bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);
if (isAffine(LHS, Context) && isAffine(RHS, Context))
if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
return true;
if (!IsLoopBranch && AllowNonAffineSubRegions &&
@ -537,7 +538,7 @@ bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
return false;
// Bail if the length is not affine.
if (!isAffine(SE->getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L),
if (!isAffine(SE->getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
Context))
return false;
@ -721,7 +722,7 @@ bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
Value *BaseValue = BasePointer->getValue();
Region &CurRegion = Context.CurRegion;
for (const SCEV *DelinearizedSize : Sizes) {
if (!isAffine(DelinearizedSize, Context, nullptr)) {
if (!isAffine(DelinearizedSize, Scope, Context, nullptr)) {
Sizes.clear();
break;
}
@ -749,7 +750,7 @@ bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
const Instruction *Insn = Pair.first;
const SCEV *AF = Pair.second;
if (!isAffine(AF, Context, BaseValue)) {
if (!isAffine(AF, Scope, Context, BaseValue)) {
invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
BaseValue);
if (!KeepGoing)
@ -780,9 +781,10 @@ bool ScopDetection::computeAccessFunctions(
bool IsNonAffine = false;
TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
auto *Scope = LI->getLoopFor(Insn->getParent());
if (!AF) {
if (isAffine(Pair.second, Context, BaseValue))
if (isAffine(Pair.second, Scope, Context, BaseValue))
Acc->DelinearizedSubscripts.push_back(Pair.second);
else
IsNonAffine = true;
@ -792,7 +794,7 @@ bool ScopDetection::computeAccessFunctions(
if (Acc->DelinearizedSubscripts.size() == 0)
IsNonAffine = true;
for (const SCEV *S : Acc->DelinearizedSubscripts)
if (!isAffine(S, Context, BaseValue))
if (!isAffine(S, Scope, Context, BaseValue))
IsNonAffine = true;
}
@ -898,7 +900,8 @@ bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
if (Context.BoxedLoopsSet.count(L))
IsVariantInNonAffineLoop = true;
bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Context, BV);
auto *Scope = LI->getLoopFor(Inst->getParent());
bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context, BV);
// Do not try to delinearize memory intrinsics and force them to be affine.
if (isa<MemIntrinsic>(Inst) && !IsAffine) {
return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,

View File

@ -1318,8 +1318,10 @@ void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP,
auto *Expr = Subscripts[i + IndexOffset];
auto Size = Sizes[i];
auto *Scope = SD.getLI()->getLoopFor(getEntryBlock());
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&Parent.getRegion(), Expr, SE, nullptr, &AccessILS))
if (!isAffineExpr(&Parent.getRegion(), Scope, Expr, SE, nullptr,
&AccessILS))
continue;
bool NonAffine = false;
@ -1783,9 +1785,10 @@ void Scop::addUserAssumptions(AssumptionCache &AC, DominatorTree &DT,
if (!DT.dominates(CI->getParent(), R->getEntry()))
continue;
auto *L = LI.getLoopFor(CI->getParent());
auto *Val = CI->getArgOperand(0);
std::vector<const SCEV *> Params;
if (!isAffineParamConstraint(Val, R, *SE, Params)) {
if (!isAffineParamConstraint(Val, R, L, *SE, Params)) {
emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE, F,
CI->getDebugLoc(),
"Non-affine user assumption ignored.");
@ -1794,7 +1797,6 @@ void Scop::addUserAssumptions(AssumptionCache &AC, DominatorTree &DT,
addParams(Params);
auto *L = LI.getLoopFor(CI->getParent());
SmallVector<isl_set *, 2> ConditionSets;
buildConditionSets(*this, Val, nullptr, L, Context, ConditionSets);
assert(ConditionSets.size() == 2);
@ -2765,11 +2767,12 @@ static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI,
return MaxLD - MinLD + 1;
}
Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, unsigned MaxLoopDepth)
Scop::Scop(Region &R, ScalarEvolution &ScalarEvolution, LoopInfo &LI,
unsigned MaxLoopDepth)
: SE(&ScalarEvolution), R(R), IsOptimized(false),
HasSingleExitEdge(R.getExitingBlock()), HasErrorBlock(false),
MaxLoopDepth(MaxLoopDepth), IslCtx(isl_ctx_alloc(), isl_ctx_free),
Context(nullptr), Affinator(this), AssumedContext(nullptr),
Context(nullptr), Affinator(this, LI), AssumedContext(nullptr),
InvalidContext(nullptr), Schedule(nullptr) {
isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_ABORT);
buildContext();
@ -3855,7 +3858,7 @@ bool ScopInfo::buildAccessMultiDimFixed(
for (auto *Subscript : Subscripts) {
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(R, Subscript, *SE, nullptr, &AccessILS))
if (!isAffineExpr(R, L, Subscript, *SE, nullptr, &AccessILS))
return false;
for (LoadInst *LInst : AccessILS)
@ -3934,7 +3937,7 @@ bool ScopInfo::buildAccessMemIntrinsic(
// Check if the length val is actually affine or if we overapproximate it
InvariantLoadsSetTy AccessILS;
bool LengthIsAffine = isAffineExpr(R, LengthVal, *SE, nullptr, &AccessILS);
bool LengthIsAffine = isAffineExpr(R, L, LengthVal, *SE, nullptr, &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
LengthIsAffine = false;
@ -4044,9 +4047,9 @@ void ScopInfo::buildAccessSingleDim(
}
InvariantLoadsSetTy AccessILS;
bool IsAffine =
!isVariantInNonAffineLoop &&
isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue(), &AccessILS);
bool IsAffine = !isVariantInNonAffineLoop &&
isAffineExpr(R, L, AccessFunction, *SE,
BasePointer->getValue(), &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
@ -4317,7 +4320,7 @@ void ScopInfo::addPHIReadAccess(PHINode *PHI) {
void ScopInfo::buildScop(Region &R, AssumptionCache &AC) {
unsigned MaxLoopDepth = getMaxLoopDepthInRegion(R, *LI, *SD);
scop.reset(new Scop(R, *SE, MaxLoopDepth));
scop.reset(new Scop(R, *SE, *LI, MaxLoopDepth));
buildStmts(R, R);
buildAccessFunctions(R, R, *SD->getInsnToMemAccMap(&R));

View File

@ -24,8 +24,8 @@
using namespace llvm;
using namespace polly;
SCEVAffinator::SCEVAffinator(Scop *S)
: S(S), Ctx(S->getIslCtx()), R(S->getRegion()), SE(*S->getSE()),
SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
: S(S), Ctx(S->getIslCtx()), R(S->getRegion()), SE(*S->getSE()), LI(LI),
TD(R.getEntry()->getParent()->getParent()->getDataLayout()) {}
SCEVAffinator::~SCEVAffinator() {
@ -44,7 +44,8 @@ __isl_give isl_pw_aff *SCEVAffinator::getPwAff(const SCEV *Expr,
} else
NumIterators = 0;
S->addParams(getParamsInAffineExpr(&R, Expr, SE));
auto *Scope = LI.getLoopFor(BB);
S->addParams(getParamsInAffineExpr(&R, Scope, Expr, SE));
return visit(Expr);
}

View File

@ -124,14 +124,15 @@ struct SCEVValidator
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
const Region *R;
Loop *Scope;
ScalarEvolution &SE;
const Value *BaseAddress;
InvariantLoadsSetTy *ILS;
public:
SCEVValidator(const Region *R, ScalarEvolution &SE, const Value *BaseAddress,
InvariantLoadsSetTy *ILS)
: R(R), SE(SE), BaseAddress(BaseAddress), ILS(ILS) {}
SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
const Value *BaseAddress, InvariantLoadsSetTy *ILS)
: R(R), Scope(Scope), SE(SE), BaseAddress(BaseAddress), ILS(ILS) {}
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
return ValidatorResult(SCEVType::INT);
@ -576,12 +577,13 @@ bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
return SCEVInRegionDependences::hasDependences(Expr, R, Scope, AllowLoops);
}
bool isAffineExpr(const Region *R, const SCEV *Expr, ScalarEvolution &SE,
const Value *BaseAddress, InvariantLoadsSetTy *ILS) {
bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
ScalarEvolution &SE, const Value *BaseAddress,
InvariantLoadsSetTy *ILS) {
if (isa<SCEVCouldNotCompute>(Expr))
return false;
SCEVValidator Validator(R, SE, BaseAddress, ILS);
SCEVValidator Validator(R, Scope, SE, BaseAddress, ILS);
DEBUG({
dbgs() << "\n";
dbgs() << "Expr: " << *Expr << "\n";
@ -600,13 +602,14 @@ bool isAffineExpr(const Region *R, const SCEV *Expr, ScalarEvolution &SE,
return Result.isValid();
}
static bool isAffineParamExpr(Value *V, const Region *R, ScalarEvolution &SE,
static bool isAffineParamExpr(Value *V, const Region *R, Loop *Scope,
ScalarEvolution &SE,
std::vector<const SCEV *> &Params) {
auto *E = SE.getSCEV(V);
if (isa<SCEVCouldNotCompute>(E))
return false;
SCEVValidator Validator(R, SE, nullptr, nullptr);
SCEVValidator Validator(R, Scope, SE, nullptr, nullptr);
ValidatorResult Result = Validator.visit(E);
if (!Result.isConstant())
return false;
@ -617,17 +620,20 @@ static bool isAffineParamExpr(Value *V, const Region *R, ScalarEvolution &SE,
return true;
}
bool isAffineParamConstraint(Value *V, const Region *R, ScalarEvolution &SE,
bool isAffineParamConstraint(Value *V, const Region *R, llvm::Loop *Scope,
ScalarEvolution &SE,
std::vector<const SCEV *> &Params, bool OrExpr) {
if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
return isAffineParamConstraint(ICmp->getOperand(0), R, SE, Params, true) &&
isAffineParamConstraint(ICmp->getOperand(1), R, SE, Params, true);
return isAffineParamConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
true) &&
isAffineParamConstraint(ICmp->getOperand(1), R, Scope, SE, Params,
true);
} else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
auto Opcode = BinOp->getOpcode();
if (Opcode == Instruction::And || Opcode == Instruction::Or)
return isAffineParamConstraint(BinOp->getOperand(0), R, SE, Params,
return isAffineParamConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
false) &&
isAffineParamConstraint(BinOp->getOperand(1), R, SE, Params,
isAffineParamConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
false);
/* Fall through */
}
@ -635,10 +641,10 @@ bool isAffineParamConstraint(Value *V, const Region *R, ScalarEvolution &SE,
if (!OrExpr)
return false;
return isAffineParamExpr(V, R, SE, Params);
return isAffineParamExpr(V, R, Scope, SE, Params);
}
std::vector<const SCEV *> getParamsInAffineExpr(const Region *R,
std::vector<const SCEV *> getParamsInAffineExpr(const Region *R, Loop *Scope,
const SCEV *Expr,
ScalarEvolution &SE,
const Value *BaseAddress) {
@ -646,7 +652,7 @@ std::vector<const SCEV *> getParamsInAffineExpr(const Region *R,
return std::vector<const SCEV *>();
InvariantLoadsSetTy ILS;
SCEVValidator Validator(R, SE, BaseAddress, &ILS);
SCEVValidator Validator(R, Scope, SE, BaseAddress, &ILS);
ValidatorResult Result = Validator.visit(Expr);
assert(Result.isValid() && "Requested parameters for an invalid SCEV!");