Revert "[XRay][compiler-rt] FDRLogWriter Abstraction" and 1 more.

Revert the following 2 commits to fix standalone compiler-rt build:
* r342523 [XRay] Detect terminfo library
* r342518 [XRay][compiler-rt] FDRLogWriter Abstraction

llvm-svn: 342596
This commit is contained in:
Evgeniy Stepanov 2018-09-19 22:29:56 +00:00
parent 0bda919870
commit 09e7f243f1
9 changed files with 89 additions and 315 deletions

View File

@ -357,16 +357,6 @@ set(COMPILER_RT_GTEST_CFLAGS
-I${COMPILER_RT_GTEST_PATH}
)
# Mocking support.
set(COMPILER_RT_GMOCK_PATH ${LLVM_MAIN_SRC_DIR}/utils/unittest/googlemock)
set(COMPILER_RT_GMOCK_SOURCE ${COMPILER_RT_GMOCK_PATH}/src/gmock-all.cc)
set(COMPILER_RT_GMOCK_CFLAGS
-DGTEST_NO_LLVM_RAW_OSTREAM=1
-DGTEST_HAS_RTTI=0
-I${COMPILER_RT_GMOCK_PATH}/include
-I${COMPILER_RT_GMOCK_PATH}
)
append_list_if(COMPILER_RT_DEBUG -DSANITIZER_DEBUG=1 COMPILER_RT_UNITTEST_CFLAGS)
append_list_if(COMPILER_RT_HAS_WCOVERED_SWITCH_DEFAULT_FLAG -Wno-covered-switch-default COMPILER_RT_UNITTEST_CFLAGS)

View File

@ -105,20 +105,6 @@ check_library_exists(dl dlopen "" COMPILER_RT_HAS_LIBDL)
check_library_exists(rt shm_open "" COMPILER_RT_HAS_LIBRT)
check_library_exists(m pow "" COMPILER_RT_HAS_LIBM)
check_library_exists(pthread pthread_create "" COMPILER_RT_HAS_LIBPTHREAD)
# Look for terminfo library, used in unittests that depend on LLVMSupport.
if(LLVM_ENABLE_TERMINFO)
foreach(library tinfo terminfo curses ncurses ncursesw)
string(TOUPPER ${library} library_suffix)
check_library_exists(
${library} setupterm "" COMPILER_RT_HAS_TERMINFO)
if(COMPILER_RT_HAS_TERMINFO)
set(COMPILER_RT_TERMINFO_LIB "${library}")
break()
endif()
endforeach()
endif()
if (ANDROID AND COMPILER_RT_HAS_LIBDL)
# Android's libstdc++ has a dependency on libdl.
list(APPEND CMAKE_REQUIRED_LIBRARIES dl)

View File

@ -19,13 +19,9 @@ set(XRAY_UNITTEST_CFLAGS
${XRAY_CFLAGS}
${COMPILER_RT_UNITTEST_CFLAGS}
${COMPILER_RT_GTEST_CFLAGS}
${COMPILER_RT_GMOCK_CFLAGS}
-I${COMPILER_RT_SOURCE_DIR}/include
-I${COMPILER_RT_SOURCE_DIR}/lib/xray
-I${COMPILER_RT_SOURCE_DIR}/lib
-I${LLVM_MAIN_SRC_DIR}/include
-I${LLVM_INCLUDE_DIR}
)
-I${COMPILER_RT_SOURCE_DIR}/lib)
function(add_xray_lib library)
add_library(${library} STATIC ${ARGN})
@ -54,11 +50,6 @@ if (NOT APPLE)
append_list_if(COMPILER_RT_HAS_LIBRT -lrt XRAY_UNITTEST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBDL -ldl XRAY_UNITTEST_LINK_FLAGS)
append_list_if(COMPILER_RT_HAS_LIBPTHREAD -pthread XRAY_UNITTEST_LINK_FLAGS)
# Needed by LLVMSupport.
append_list_if(
COMPILER_RT_HAS_TERMINFO
-l${COMPILER_RT_TERMINFO_LIB} XRAY_UNITTEST_LINK_FLAGS)
endif()
macro(add_xray_unittest testname)
@ -77,14 +68,11 @@ macro(add_xray_unittest testname)
COMPILE_DEPS ${TEST_SOURCES} ${COMPILER_RT_GTEST_SOURCE}
${XRAY_HEADERS} ${XRAY_ALL_SOURCE_FILES_ABS_PATHS}
RUNTIME "${XRAY_RUNTIME_LIBS}"
DEPS gtest xray llvm-xray LLVMXRay LLVMTestingSupport
DEPS gtest xray llvm-xray
CFLAGS ${XRAY_UNITTEST_CFLAGS}
LINK_FLAGS ${TARGET_LINK_FLAGS} ${XRAY_UNITTEST_LINK_FLAGS}
-lLLVMXRay -lLLVMSupport -lLLVMTestingSupport
)
LINK_FLAGS ${TARGET_LINK_FLAGS} ${XRAY_UNITTEST_LINK_FLAGS})
set_target_properties(XRayUnitTests
PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
PROPERTIES RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endforeach()
endif()
endmacro()

View File

@ -8,7 +8,3 @@ add_xray_unittest(XRayFunctionCallTrieTest SOURCES
function_call_trie_test.cc xray_unit_test_main.cc)
add_xray_unittest(XRayProfileCollectorTest SOURCES
profile_collector_test.cc xray_unit_test_main.cc)
add_xray_unittest(XRayFDRLoggingTest SOURCES
fdr_log_writer_test.cc
xray_unit_test_main.cc)

View File

@ -1,92 +0,0 @@
//===-- fdr_log_writer_test.cc --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#include <time.h>
#include "xray/xray_records.h"
#include "xray_fdr_log_writer.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Testing/Support/Error.h"
#include "llvm/XRay/Trace.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace __xray {
namespace {
static constexpr size_t kSize = 4096;
using ::llvm::HasValue;
using ::testing::Eq;
using ::testing::SizeIs;
// Exercise the common code path where we initialize a buffer and are able to
// write some records successfully.
TEST(FdrLogWriterTest, WriteSomeRecords) {
bool Success = false;
BufferQueue Buffers(kSize, 1, Success);
BufferQueue::Buffer B;
ASSERT_EQ(Buffers.getBuffer(B), BufferQueue::ErrorCode::Ok);
FDRLogWriter Writer(B);
MetadataRecord Preamble[] = {
createMetadataRecord<MetadataRecord::RecordKinds::NewBuffer>(int32_t{1}),
createMetadataRecord<MetadataRecord::RecordKinds::WalltimeMarker>(
int64_t{1}, int32_t{2}),
createMetadataRecord<MetadataRecord::RecordKinds::Pid>(int32_t{1}),
};
ASSERT_THAT(Writer.writeMetadataRecords(Preamble),
Eq(sizeof(MetadataRecord) * 3));
ASSERT_TRUE(Writer.writeMetadata<MetadataRecord::RecordKinds::NewCPUId>(1));
ASSERT_TRUE(
Writer.writeFunction(FDRLogWriter::FunctionRecordKind::Enter, 1, 1));
ASSERT_TRUE(
Writer.writeFunction(FDRLogWriter::FunctionRecordKind::Exit, 1, 1));
ASSERT_EQ(Buffers.releaseBuffer(B), BufferQueue::ErrorCode::Ok);
ASSERT_EQ(B.Data, nullptr);
ASSERT_EQ(Buffers.finalize(), BufferQueue::ErrorCode::Ok);
// We then need to go through each element of the Buffers, and re-create a
// flat buffer that we would see if they were laid out in a file. This also
// means we need to write out the header manually.
// TODO: Isolate the file header writing.
std::string Serialized;
std::aligned_storage<sizeof(XRayFileHeader), alignof(XRayFileHeader)>::type
HeaderStorage;
auto *Header = reinterpret_cast<XRayFileHeader *>(&HeaderStorage);
new (Header) XRayFileHeader();
Header->Version = 3;
Header->Type = FileTypes::FDR_LOG;
Header->CycleFrequency = 3e9;
Header->ConstantTSC = 1;
Header->NonstopTSC = 1;
Serialized.append(reinterpret_cast<const char *>(&HeaderStorage),
sizeof(XRayFileHeader));
size_t BufferCount = 0;
Buffers.apply([&](const BufferQueue::Buffer &B) {
++BufferCount;
auto Size = atomic_load_relaxed(&B.Extents);
auto Extents =
createMetadataRecord<MetadataRecord::RecordKinds::BufferExtents>(Size);
Serialized.append(reinterpret_cast<const char *>(&Extents),
sizeof(Extents));
Serialized.append(reinterpret_cast<const char *>(B.Data), Size);
});
ASSERT_EQ(BufferCount, 1u);
llvm::DataExtractor DE(Serialized, true, 8);
auto TraceOrErr = llvm::xray::loadTrace(DE);
EXPECT_THAT_EXPECTED(TraceOrErr, HasValue(SizeIs(2)));
}
} // namespace
} // namespace __xray

View File

@ -12,9 +12,6 @@
//===----------------------------------------------------------------------===//
#ifndef XRAY_XRAY_FDR_LOG_RECORDS_H
#define XRAY_XRAY_FDR_LOG_RECORDS_H
#include <cstdint>
namespace __xray {
enum class RecordType : uint8_t { Function, Metadata };
@ -71,6 +68,4 @@ struct alignas(8) FunctionRecord {
static_assert(sizeof(FunctionRecord) == 8, "Wrong size for FunctionRecord.");
} // namespace __xray
#endif // XRAY_XRAY_FDR_LOG_RECORDS_H

View File

@ -1,119 +0,0 @@
//===-- xray_fdr_log_writer.h ---------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#ifndef COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_
#define COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_
#include "xray_buffer_queue.h"
#include "xray_fdr_log_records.h"
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
namespace __xray {
template <size_t Index> struct SerializerImpl {
template <class Tuple,
typename std::enable_if<
Index<std::tuple_size<
typename std::remove_reference<Tuple>::type>::value,
int>::type = 0> static void serializeTo(char *Buffer,
Tuple &&T) {
auto P = reinterpret_cast<const char *>(&std::get<Index>(T));
constexpr auto Size = sizeof(std::get<Index>(T));
internal_memcpy(Buffer, P, Size);
SerializerImpl<Index + 1>::serializeTo(Buffer + Size,
std::forward<Tuple>(T));
}
template <class Tuple,
typename std::enable_if<
Index >= std::tuple_size<typename std::remove_reference<
Tuple>::type>::value,
int>::type = 0>
static void serializeTo(char *, Tuple &&){};
};
using Serializer = SerializerImpl<0>;
template <MetadataRecord::RecordKinds Kind, class... DataTypes>
MetadataRecord createMetadataRecord(DataTypes &&... Ds) {
MetadataRecord R;
R.Type = 1;
R.RecordKind = static_cast<uint8_t>(Kind);
Serializer::serializeTo(R.Data,
std::make_tuple(std::forward<DataTypes>(Ds)...));
return R;
}
class FDRLogWriter {
BufferQueue::Buffer &Buffer;
char *NextRecord = nullptr;
template <class T> void writeRecord(const T &R) {
internal_memcpy(NextRecord, reinterpret_cast<const char *>(&R), sizeof(T));
NextRecord += sizeof(T);
atomic_fetch_add(&Buffer.Extents, sizeof(T), memory_order_acq_rel);
}
public:
explicit FDRLogWriter(BufferQueue::Buffer &B, char *P)
: Buffer(B), NextRecord(P) {
DCHECK_NE(Buffer.Data, nullptr);
DCHECK_NE(NextRecord, nullptr);
}
explicit FDRLogWriter(BufferQueue::Buffer &B)
: FDRLogWriter(B, static_cast<char *>(B.Data)) {}
template <MetadataRecord::RecordKinds Kind, class... Data>
bool writeMetadata(Data &&... Ds) {
// TODO: Check boundary conditions:
// 1) Buffer is full, and cannot handle one metadata record.
// 2) Buffer queue is finalising.
writeRecord(createMetadataRecord<Kind>(std::forward<Data>(Ds)...));
return true;
}
template <size_t N> size_t writeMetadataRecords(MetadataRecord (&Recs)[N]) {
constexpr auto Size = sizeof(MetadataRecord) * N;
internal_memcpy(NextRecord, reinterpret_cast<const char *>(Recs), Size);
NextRecord += Size;
atomic_fetch_add(&Buffer.Extents, Size, memory_order_acq_rel);
return Size;
}
enum class FunctionRecordKind : uint8_t {
Enter = 0x00,
Exit = 0x01,
TailExit = 0x02,
EnterArg = 0x03,
};
bool writeFunction(FunctionRecordKind Kind, int32_t FuncId, int32_t Delta) {
FunctionRecord R;
R.Type = 0;
R.RecordKind = uint8_t(Kind);
R.FuncId = FuncId;
R.TSCDelta = Delta;
writeRecord(R);
return true;
}
char *getNextRecord() const { return NextRecord; }
}; // namespace __xray
} // namespace __xray
#endif // COMPILER-RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_

View File

@ -34,7 +34,6 @@
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_fdr_flags.h"
#include "xray_fdr_log_writer.h"
#include "xray_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
@ -139,35 +138,59 @@ static ThreadLocalData &getThreadLocalData() {
static void writeNewBufferPreamble(tid_t Tid, timespec TS,
pid_t Pid) XRAY_NEVER_INSTRUMENT {
static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
static constexpr int InitRecordsCount = 3;
auto &TLD = getThreadLocalData();
MetadataRecord Metadata[] = {
// Write out a MetadataRecord to signify that this is the start of a new
// buffer, associated with a particular thread, with a new CPU. For the
// data, we have 15 bytes to squeeze as much information as we can. At
// this point we only write down the following bytes:
// - Thread ID (tid_t, cast to 4 bytes type due to Darwin being 8 bytes)
createMetadataRecord<MetadataRecord::RecordKinds::NewBuffer>(
static_cast<int32_t>(Tid)),
MetadataRecord Metadata[InitRecordsCount];
{
// Write out a MetadataRecord to signify that this is the start of a new
// buffer, associated with a particular thread, with a new CPU. For the
// data, we have 15 bytes to squeeze as much information as we can. At this
// point we only write down the following bytes:
// - Thread ID (tid_t, cast to 4 bytes type due to Darwin being 8 bytes)
auto &NewBuffer = Metadata[0];
NewBuffer.Type = uint8_t(RecordType::Metadata);
NewBuffer.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewBuffer);
int32_t tid = static_cast<int32_t>(Tid);
internal_memcpy(&NewBuffer.Data, &tid, sizeof(tid));
}
// Also write the WalltimeMarker record. We only really need microsecond
// precision here, and enforce across platforms that we need 64-bit
// seconds and 32-bit microseconds encoded in the Metadata record.
createMetadataRecord<MetadataRecord::RecordKinds::WalltimeMarker>(
static_cast<int64_t>(TS.tv_sec),
static_cast<int32_t>(TS.tv_nsec / 1000)),
// Also write the WalltimeMarker record.
{
static_assert(sizeof(time_t) <= 8, "time_t needs to be at most 8 bytes");
auto &WalltimeMarker = Metadata[1];
WalltimeMarker.Type = uint8_t(RecordType::Metadata);
WalltimeMarker.RecordKind =
uint8_t(MetadataRecord::RecordKinds::WalltimeMarker);
// Also write the Pid record.
createMetadataRecord<MetadataRecord::RecordKinds::Pid>(
static_cast<int32_t>(Pid)),
};
// We only really need microsecond precision here, and enforce across
// platforms that we need 64-bit seconds and 32-bit microseconds encoded in
// the Metadata record.
int32_t Micros = TS.tv_nsec / 1000;
int64_t Seconds = TS.tv_sec;
internal_memcpy(WalltimeMarker.Data, &Seconds, sizeof(Seconds));
internal_memcpy(WalltimeMarker.Data + sizeof(Seconds), &Micros,
sizeof(Micros));
}
// Also write the Pid record.
{
// Write out a MetadataRecord that contains the current pid
auto &PidMetadata = Metadata[2];
PidMetadata.Type = uint8_t(RecordType::Metadata);
PidMetadata.RecordKind = uint8_t(MetadataRecord::RecordKinds::Pid);
int32_t pid = static_cast<int32_t>(Pid);
internal_memcpy(&PidMetadata.Data, &pid, sizeof(pid));
}
TLD.NumConsecutiveFnEnters = 0;
TLD.NumTailCalls = 0;
if (TLD.BQ == nullptr || TLD.BQ->finalizing())
return;
FDRLogWriter Writer(TLD.Buffer);
TLD.RecordPtr += Writer.writeMetadataRecords(Metadata);
internal_memcpy(TLD.RecordPtr, Metadata,
sizeof(MetadataRecord) * InitRecordsCount);
TLD.RecordPtr += sizeof(MetadataRecord) * InitRecordsCount;
atomic_store(&TLD.Buffer.Extents, sizeof(MetadataRecord) * InitRecordsCount,
memory_order_release);
}
static void setupNewBuffer(int (*wall_clock_reader)(
@ -175,7 +198,6 @@ static void setupNewBuffer(int (*wall_clock_reader)(
auto &TLD = getThreadLocalData();
auto &B = TLD.Buffer;
TLD.RecordPtr = static_cast<char *>(B.Data);
atomic_store(&B.Extents, 0, memory_order_release);
tid_t Tid = GetTid();
timespec TS{0, 0};
pid_t Pid = internal_getpid();
@ -199,38 +221,52 @@ static void decrementExtents(size_t Subtract) {
static void writeNewCPUIdMetadata(uint16_t CPU,
uint64_t TSC) XRAY_NEVER_INSTRUMENT {
auto &TLD = getThreadLocalData();
FDRLogWriter W(TLD.Buffer, TLD.RecordPtr);
MetadataRecord NewCPUId;
NewCPUId.Type = uint8_t(RecordType::Metadata);
NewCPUId.RecordKind = uint8_t(MetadataRecord::RecordKinds::NewCPUId);
// The data for the New CPU will contain the following bytes:
// - CPU ID (uint16_t, 2 bytes)
// - Full TSC (uint64_t, 8 bytes)
// Total = 10 bytes.
W.writeMetadata<MetadataRecord::RecordKinds::NewCPUId>(CPU, TSC);
TLD.RecordPtr = W.getNextRecord();
internal_memcpy(&NewCPUId.Data, &CPU, sizeof(CPU));
internal_memcpy(&NewCPUId.Data[sizeof(CPU)], &TSC, sizeof(TSC));
internal_memcpy(TLD.RecordPtr, &NewCPUId, sizeof(MetadataRecord));
TLD.RecordPtr += sizeof(MetadataRecord);
TLD.NumConsecutiveFnEnters = 0;
TLD.NumTailCalls = 0;
incrementExtents(sizeof(MetadataRecord));
}
static void writeTSCWrapMetadata(uint64_t TSC) XRAY_NEVER_INSTRUMENT {
auto &TLD = getThreadLocalData();
FDRLogWriter W(TLD.Buffer, TLD.RecordPtr);
MetadataRecord TSCWrap;
TSCWrap.Type = uint8_t(RecordType::Metadata);
TSCWrap.RecordKind = uint8_t(MetadataRecord::RecordKinds::TSCWrap);
// The data for the TSCWrap record contains the following bytes:
// - Full TSC (uint64_t, 8 bytes)
// Total = 8 bytes.
W.writeMetadata<MetadataRecord::RecordKinds::TSCWrap>(TSC);
TLD.RecordPtr = W.getNextRecord();
internal_memcpy(&TSCWrap.Data, &TSC, sizeof(TSC));
internal_memcpy(TLD.RecordPtr, &TSCWrap, sizeof(MetadataRecord));
TLD.RecordPtr += sizeof(MetadataRecord);
TLD.NumConsecutiveFnEnters = 0;
TLD.NumTailCalls = 0;
incrementExtents(sizeof(MetadataRecord));
}
// Call Argument metadata records store the arguments to a function in the
// order of their appearance; holes are not supported by the buffer format.
static void writeCallArgumentMetadata(uint64_t A) XRAY_NEVER_INSTRUMENT {
auto &TLD = getThreadLocalData();
FDRLogWriter W(TLD.Buffer, TLD.RecordPtr);
W.writeMetadata<MetadataRecord::RecordKinds::CallArgument>(A);
TLD.RecordPtr = W.getNextRecord();
MetadataRecord CallArg;
CallArg.Type = uint8_t(RecordType::Metadata);
CallArg.RecordKind = uint8_t(MetadataRecord::RecordKinds::CallArgument);
internal_memcpy(CallArg.Data, &A, sizeof(A));
internal_memcpy(TLD.RecordPtr, &CallArg, sizeof(MetadataRecord));
TLD.RecordPtr += sizeof(MetadataRecord);
incrementExtents(sizeof(MetadataRecord));
}
static void writeFunctionRecord(int32_t FuncId, uint32_t TSCDelta,
@ -243,8 +279,8 @@ static void writeFunctionRecord(int32_t FuncId, uint32_t TSCDelta,
return;
}
auto &TLD = getThreadLocalData();
FDRLogWriter W(TLD.Buffer, TLD.RecordPtr);
FunctionRecord FuncRecord;
FuncRecord.Type = uint8_t(RecordType::Function);
// Only take 28 bits of the function id.
//
@ -253,25 +289,27 @@ static void writeFunctionRecord(int32_t FuncId, uint32_t TSCDelta,
// to the first 28 bits. To do this properly, this means we need to mask the
// function id with (2 ^ 28) - 1 == 0x0fffffff.
//
auto TruncatedId = FuncId & MaxFuncId;
auto Kind = FDRLogWriter::FunctionRecordKind::Enter;
FuncRecord.FuncId = FuncId & MaxFuncId;
FuncRecord.TSCDelta = TSCDelta;
auto &TLD = getThreadLocalData();
switch (EntryType) {
case XRayEntryType::ENTRY:
++TLD.NumConsecutiveFnEnters;
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
break;
case XRayEntryType::LOG_ARGS_ENTRY:
// We should not rewind functions with logged args.
TLD.NumConsecutiveFnEnters = 0;
TLD.NumTailCalls = 0;
Kind = FDRLogWriter::FunctionRecordKind::EnterArg;
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionEnter);
break;
case XRayEntryType::EXIT:
// If we've decided to log the function exit, we will never erase the log
// before it.
TLD.NumConsecutiveFnEnters = 0;
TLD.NumTailCalls = 0;
Kind = FDRLogWriter::FunctionRecordKind::Exit;
FuncRecord.RecordKind = uint8_t(FunctionRecord::RecordKinds::FunctionExit);
break;
case XRayEntryType::TAIL:
// If we just entered the function we're tail exiting from or erased every
@ -286,7 +324,8 @@ static void writeFunctionRecord(int32_t FuncId, uint32_t TSCDelta,
TLD.NumTailCalls = 0;
TLD.NumConsecutiveFnEnters = 0;
}
Kind = FDRLogWriter::FunctionRecordKind::TailExit;
FuncRecord.RecordKind =
uint8_t(FunctionRecord::RecordKinds::FunctionTailExit);
break;
case XRayEntryType::CUSTOM_EVENT: {
// This is a bug in patching, so we'll report it once and move on.
@ -307,8 +346,9 @@ static void writeFunctionRecord(int32_t FuncId, uint32_t TSCDelta,
}
}
W.writeFunction(Kind, TruncatedId, TSCDelta);
TLD.RecordPtr = W.getNextRecord();
internal_memcpy(TLD.RecordPtr, &FuncRecord, sizeof(FunctionRecord));
TLD.RecordPtr += sizeof(FunctionRecord);
incrementExtents(sizeof(FunctionRecord));
}
static atomic_uint64_t TicksPerSec{0};
@ -383,9 +423,6 @@ static void rewindRecentCall(uint64_t TSC, uint64_t &LastTSC,
static bool releaseThreadLocalBuffer(BufferQueue &BQArg) {
auto &TLD = getThreadLocalData();
auto EC = BQArg.releaseBuffer(TLD.Buffer);
if (TLD.Buffer.Data == nullptr)
return true;
if (EC != BufferQueue::ErrorCode::Ok) {
Report("Failed to release buffer at %p; error=%s\n", TLD.Buffer.Data,
BufferQueue::getErrorString(EC));
@ -1137,8 +1174,6 @@ XRayLogInitStatus fdrLoggingInit(UNUSED size_t BufferSize,
auto &TLD = *reinterpret_cast<ThreadLocalData *>(TLDPtr);
if (TLD.BQ == nullptr)
return;
if (TLD.Buffer.Data == nullptr)
return;
auto EC = TLD.BQ->releaseBuffer(TLD.Buffer);
if (EC != BufferQueue::ErrorCode::Ok)
Report("At thread exit, failed to release buffer at %p; error=%s\n",

View File

@ -46,25 +46,20 @@ namespace xray {
///
class Trace {
XRayFileHeader FileHeader;
using RecordVector = std::vector<XRayRecord>;
RecordVector Records;
std::vector<XRayRecord> Records;
typedef std::vector<XRayRecord>::const_iterator citerator;
friend Expected<Trace> loadTrace(const DataExtractor &, bool);
public:
using size_type = RecordVector::size_type;
using value_type = RecordVector::value_type;
using const_iterator = RecordVector::const_iterator;
/// Provides access to the loaded XRay trace file header.
const XRayFileHeader &getFileHeader() const { return FileHeader; }
const_iterator begin() const { return Records.begin(); }
const_iterator end() const { return Records.end(); }
citerator begin() const { return Records.begin(); }
citerator end() const { return Records.end(); }
bool empty() const { return Records.empty(); }
size_type size() const { return Records.size(); }
size_t size() const { return Records.size(); }
};
/// This function will attempt to load XRay trace records from the provided