forked from OSchip/llvm-project
Add a deterministic finite automaton based packetizer for VLIW architectures
llvm-svn: 145629
This commit is contained in:
parent
e0a64f7302
commit
08ebdc1e71
|
@ -1858,6 +1858,9 @@ $(ObjDir)/ARMGenDecoderTables.inc.tmp : ARM.td $(ObjDir)/.dir $(LLVM_TBLGEN)
|
|||
$(Echo) "Building $(<F) decoder tables with tblgen"
|
||||
$(Verb) $(LLVMTableGen) -gen-arm-decoder -o $(call SYSPATH, $@) $<
|
||||
|
||||
$(ObjDir)/%GenDFAPacketizer.inc.tmp : %.td $(ObjDir)/.dir $(LLVM_TBLGEN)
|
||||
$(Echo) "Building $(<F) DFA packetizer tables with tblgen"
|
||||
$(Verb) $(LLVMTableGen) -gen-dfa-packetizer -o $(call SYSPATH, $@) $<
|
||||
|
||||
clean-local::
|
||||
-$(Verb) $(RM) -f $(INCFiles)
|
||||
|
|
|
@ -0,0 +1,78 @@
|
|||
//=- llvm/CodeGen/DFAPacketizer.h - DFA Packetizer for VLIW ---*- C++ -*-=====//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This class implements a deterministic finite automaton (DFA) based
|
||||
// packetizing mechanism for VLIW architectures. It provides APIs to
|
||||
// determine whether there exists a legal mapping of instructions to
|
||||
// functional unit assignments in a packet. The DFA is auto-generated from
|
||||
// the target's Schedule.td file.
|
||||
//
|
||||
// A DFA consists of 3 major elements: states, inputs, and transitions. For
|
||||
// the packetizing mechanism, the input is the set of instruction classes for
|
||||
// a target. The state models all possible combinations of functional unit
|
||||
// consumption for a given set of instructions in a packet. A transition
|
||||
// models the addition of an instruction to a packet. In the DFA constructed
|
||||
// by this class, if an instruction can be added to a packet, then a valid
|
||||
// transition exists from the corresponding state. Invalid transitions
|
||||
// indicate that the instruction cannot be added to the current packet.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_DFAPACKETIZER_H
|
||||
#define LLVM_CODEGEN_DFAPACKETIZER_H
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class MCInstrDesc;
|
||||
class MachineInstr;
|
||||
class InstrItineraryData;
|
||||
|
||||
class DFAPacketizer {
|
||||
private:
|
||||
typedef std::pair<unsigned, unsigned> UnsignPair;
|
||||
const InstrItineraryData *InstrItins;
|
||||
int CurrentState;
|
||||
const int (*DFAStateInputTable)[2];
|
||||
const unsigned *DFAStateEntryTable;
|
||||
|
||||
// CachedTable is a map from <FromState, Input> to ToState
|
||||
DenseMap<UnsignPair, unsigned> CachedTable;
|
||||
|
||||
// ReadTable - Read the DFA transition table and update CachedTable
|
||||
void ReadTable(unsigned int state);
|
||||
|
||||
public:
|
||||
DFAPacketizer(const InstrItineraryData* I, const int (*SIT)[2],
|
||||
const unsigned* SET);
|
||||
|
||||
// Reset the current state to make all resources available
|
||||
void clearResources() {
|
||||
CurrentState = 0;
|
||||
}
|
||||
|
||||
// canReserveResources - Check if the resources occupied by a MCInstrDesc
|
||||
// are available in the current state
|
||||
bool canReserveResources(const llvm::MCInstrDesc* MID);
|
||||
|
||||
// reserveResources - Reserve the resources occupied by a MCInstrDesc and
|
||||
// change the current state to reflect that change
|
||||
void reserveResources(const llvm::MCInstrDesc* MID);
|
||||
|
||||
// canReserveResources - Check if the resources occupied by a machine
|
||||
// instruction are available in the current state
|
||||
bool canReserveResources(llvm::MachineInstr* MI);
|
||||
|
||||
// reserveResources - Reserve the resources occupied by a machine
|
||||
// instruction and change the current state to reflect that change
|
||||
void reserveResources(llvm::MachineInstr* MI);
|
||||
};
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,98 @@
|
|||
//=- llvm/CodeGen/DFAPacketizer.cpp - DFA Packetizer for VLIW -*- C++ -*-=====//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// This class implements a deterministic finite automaton (DFA) based
|
||||
// packetizing mechanism for VLIW architectures. It provides APIs to
|
||||
// determine whether there exists a legal mapping of instructions to
|
||||
// functional unit assignments in a packet. The DFA is auto-generated from
|
||||
// the target's Schedule.td file.
|
||||
//
|
||||
// A DFA consists of 3 major elements: states, inputs, and transitions. For
|
||||
// the packetizing mechanism, the input is the set of instruction classes for
|
||||
// a target. The state models all possible combinations of functional unit
|
||||
// consumption for a given set of instructions in a packet. A transition
|
||||
// models the addition of an instruction to a packet. In the DFA constructed
|
||||
// by this class, if an instruction can be added to a packet, then a valid
|
||||
// transition exists from the corresponding state. Invalid transitions
|
||||
// indicate that the instruction cannot be added to the current packet.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/DFAPacketizer.h"
|
||||
#include "llvm/CodeGen/MachineInstr.h"
|
||||
#include "llvm/MC/MCInstrItineraries.h"
|
||||
using namespace llvm;
|
||||
|
||||
DFAPacketizer::DFAPacketizer(const InstrItineraryData *I, const int (*SIT)[2],
|
||||
const unsigned* SET):
|
||||
InstrItins(I), CurrentState(0), DFAStateInputTable(SIT),
|
||||
DFAStateEntryTable(SET) {}
|
||||
|
||||
|
||||
//
|
||||
// ReadTable - Read the DFA transition table and update CachedTable
|
||||
//
|
||||
// Format of the transition tables:
|
||||
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
|
||||
// transitions
|
||||
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable
|
||||
// for the ith state
|
||||
//
|
||||
void DFAPacketizer::ReadTable(unsigned int state) {
|
||||
unsigned ThisState = DFAStateEntryTable[state];
|
||||
unsigned NextStateInTable = DFAStateEntryTable[state+1];
|
||||
// Early exit in case CachedTable has already contains this
|
||||
// state's transitions
|
||||
if (CachedTable.count(UnsignPair(state,
|
||||
DFAStateInputTable[ThisState][0])))
|
||||
return;
|
||||
|
||||
for (unsigned i = ThisState; i < NextStateInTable; i++)
|
||||
CachedTable[UnsignPair(state, DFAStateInputTable[i][0])] =
|
||||
DFAStateInputTable[i][1];
|
||||
}
|
||||
|
||||
|
||||
// canReserveResources - Check if the resources occupied by a MCInstrDesc
|
||||
// are available in the current state
|
||||
bool DFAPacketizer::canReserveResources(const llvm::MCInstrDesc* MID) {
|
||||
unsigned InsnClass = MID->getSchedClass();
|
||||
const llvm::InstrStage* IS = InstrItins->beginStage(InsnClass);
|
||||
unsigned FuncUnits = IS->getUnits();
|
||||
UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
|
||||
ReadTable(CurrentState);
|
||||
return (CachedTable.count(StateTrans) != 0);
|
||||
}
|
||||
|
||||
|
||||
// reserveResources - Reserve the resources occupied by a MCInstrDesc and
|
||||
// change the current state to reflect that change
|
||||
void DFAPacketizer::reserveResources(const llvm::MCInstrDesc* MID) {
|
||||
unsigned InsnClass = MID->getSchedClass();
|
||||
const llvm::InstrStage* IS = InstrItins->beginStage(InsnClass);
|
||||
unsigned FuncUnits = IS->getUnits();
|
||||
UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
|
||||
ReadTable(CurrentState);
|
||||
assert(CachedTable.count(StateTrans) != 0);
|
||||
CurrentState = CachedTable[StateTrans];
|
||||
}
|
||||
|
||||
|
||||
// canReserveResources - Check if the resources occupied by a machine
|
||||
// instruction are available in the current state
|
||||
bool DFAPacketizer::canReserveResources(llvm::MachineInstr* MI) {
|
||||
const llvm::MCInstrDesc& MID = MI->getDesc();
|
||||
return canReserveResources(&MID);
|
||||
}
|
||||
|
||||
// reserveResources - Reserve the resources occupied by a machine
|
||||
// instruction and change the current state to reflect that change
|
||||
void DFAPacketizer::reserveResources(llvm::MachineInstr* MI) {
|
||||
const llvm::MCInstrDesc& MID = MI->getDesc();
|
||||
reserveResources(&MID);
|
||||
}
|
|
@ -0,0 +1,512 @@
|
|||
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This class parses the Schedule.td file and produces an API that can be used
|
||||
// to reason about whether an instruction can be added to a packet on a VLIW
|
||||
// architecture. The class internally generates a deterministic finite
|
||||
// automaton (DFA) that models all possible mappings of machine instructions
|
||||
// to functional units as instructions are added to a packet.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/MC/MCInstrDesc.h"
|
||||
#include "llvm/MC/MCInstrItineraries.h"
|
||||
#include "llvm/TableGen/Record.h"
|
||||
#include "CodeGenTarget.h"
|
||||
#include "DFAPacketizerEmitter.h"
|
||||
#include <list>
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
//
|
||||
//
|
||||
// State represents the usage of machine resources if the packet contains
|
||||
// a set of instruction classes.
|
||||
//
|
||||
// Specifically, currentState is a set of bit-masks
|
||||
// The nth bit in a bit-mask indicates whether the nth resource is being used
|
||||
// by this state. The set of bit-masks in a state represent the different
|
||||
// possible outcomes of transitioning to this state.
|
||||
// For example: Consider a two resource architecture: Resource L and Resource M
|
||||
// with three instruction classes: L, M, and L_or_M
|
||||
// From the initial state (currentState = 0x00), if we add instruction class
|
||||
// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
|
||||
// represents the possible resource states that can result from adding a L_or_M
|
||||
// instruction
|
||||
//
|
||||
// Another way of thinking about this transition is we are mapping a NDFA with
|
||||
// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]
|
||||
//
|
||||
//
|
||||
namespace {
|
||||
class State {
|
||||
public:
|
||||
static int currentStateNum;
|
||||
int stateNum;
|
||||
bool isInitial;
|
||||
std::set<unsigned> stateInfo;
|
||||
|
||||
State();
|
||||
State(const State& S);
|
||||
|
||||
//
|
||||
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
|
||||
// valid transition from this state i.e., can an instruction of type InsnClass
|
||||
// be added to the packet represented by this state
|
||||
//
|
||||
// PossibleStates is the set of valid resource states that ensue from valid
|
||||
// transitions
|
||||
//
|
||||
bool canAddInsnClass(unsigned InsnClass, std::set<unsigned>& PossibleStates);
|
||||
};
|
||||
} // End anonymous namespace
|
||||
|
||||
|
||||
namespace {
|
||||
struct Transition {
|
||||
public:
|
||||
static int currentTransitionNum;
|
||||
int transitionNum;
|
||||
State* from;
|
||||
unsigned input;
|
||||
State* to;
|
||||
|
||||
Transition(State* from_, unsigned input_, State* to_);
|
||||
};
|
||||
} // End anonymous namespace
|
||||
|
||||
|
||||
//
|
||||
// Comparators to keep set of states sorted
|
||||
//
|
||||
namespace {
|
||||
struct ltState {
|
||||
bool operator()(const State* s1, const State* s2) const;
|
||||
};
|
||||
} // End anonymous namespace
|
||||
|
||||
|
||||
//
|
||||
// class DFA: deterministic finite automaton for processor resource tracking
|
||||
//
|
||||
namespace {
|
||||
class DFA {
|
||||
public:
|
||||
DFA();
|
||||
|
||||
// Set of states. Need to keep this sorted to emit the transition table
|
||||
std::set<State*, ltState> states;
|
||||
|
||||
// Map from a state to the list of transitions with that state as source
|
||||
std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
|
||||
State* currentState;
|
||||
|
||||
// Highest valued Input seen
|
||||
unsigned LargestInput;
|
||||
|
||||
//
|
||||
// Modify the DFA
|
||||
//
|
||||
void initialize();
|
||||
void addState(State*);
|
||||
void addTransition(Transition*);
|
||||
|
||||
//
|
||||
// getTransition - Return the state when a transition is made from
|
||||
// State From with Input I. If a transition is not found, return NULL
|
||||
//
|
||||
State* getTransition(State*, unsigned);
|
||||
|
||||
//
|
||||
// isValidTransition: Predicate that checks if there is a valid transition
|
||||
// from state From on input InsnClass
|
||||
//
|
||||
bool isValidTransition(State* From, unsigned InsnClass);
|
||||
|
||||
//
|
||||
// writeTable: Print out a table representing the DFA
|
||||
//
|
||||
void writeTableAndAPI(raw_ostream &OS, const std::string& ClassName);
|
||||
};
|
||||
} // End anonymous namespace
|
||||
|
||||
|
||||
//
|
||||
// Constructors for State, Transition, and DFA
|
||||
//
|
||||
State::State() :
|
||||
stateNum(currentStateNum++), isInitial(false) {}
|
||||
|
||||
|
||||
State::State(const State& S) :
|
||||
stateNum(currentStateNum++), isInitial(S.isInitial),
|
||||
stateInfo(S.stateInfo) {}
|
||||
|
||||
|
||||
Transition::Transition(State* from_, unsigned input_, State* to_) :
|
||||
transitionNum(currentTransitionNum++), from(from_), input(input_),
|
||||
to(to_) {}
|
||||
|
||||
|
||||
DFA::DFA() :
|
||||
LargestInput(0) {}
|
||||
|
||||
|
||||
bool ltState::operator()(const State* s1, const State* s2) const {
|
||||
return (s1->stateNum < s2->stateNum);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
|
||||
// valid transition from this state i.e., can an instruction of type InsnClass
|
||||
// be added to the packet represented by this state
|
||||
//
|
||||
// PossibleStates is the set of valid resource states that ensue from valid
|
||||
// transitions
|
||||
//
|
||||
bool State::canAddInsnClass(unsigned InsnClass,
|
||||
std::set<unsigned>& PossibleStates) {
|
||||
//
|
||||
// Iterate over all resource states in currentState
|
||||
//
|
||||
bool AddedState = false;
|
||||
|
||||
for (std::set<unsigned>::iterator SI = stateInfo.begin();
|
||||
SI != stateInfo.end(); ++SI) {
|
||||
unsigned thisState = *SI;
|
||||
|
||||
//
|
||||
// Iterate over all possible resources used in InsnClass
|
||||
// For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}
|
||||
//
|
||||
|
||||
DenseSet<unsigned> VisitedResourceStates;
|
||||
for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
|
||||
if ((0x1 << j) & InsnClass) {
|
||||
//
|
||||
// For each possible resource used in InsnClass, generate the
|
||||
// resource state if that resource was used
|
||||
//
|
||||
unsigned ResultingResourceState = thisState | (0x1 << j);
|
||||
//
|
||||
// Check if the resulting resource state can be accommodated in this
|
||||
// packet
|
||||
// We compute ResultingResourceState OR thisState
|
||||
// If the result of the OR is different than thisState, it implies
|
||||
// that there is at least one resource that can be used to schedule
|
||||
// InsnClass in the current packet
|
||||
// Insert ResultingResourceState into PossibleStates only if we haven't
|
||||
// processed ResultingResourceState before
|
||||
//
|
||||
if ((ResultingResourceState != thisState) &&
|
||||
(VisitedResourceStates.count(ResultingResourceState) == 0)) {
|
||||
VisitedResourceStates.insert(ResultingResourceState);
|
||||
PossibleStates.insert(ResultingResourceState);
|
||||
AddedState = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return AddedState;
|
||||
}
|
||||
|
||||
|
||||
void DFA::initialize() {
|
||||
currentState->isInitial = true;
|
||||
}
|
||||
|
||||
|
||||
void DFA::addState(State* S) {
|
||||
assert(!states.count(S) && "State already exists");
|
||||
states.insert(S);
|
||||
}
|
||||
|
||||
|
||||
void DFA::addTransition(Transition* T) {
|
||||
// Update LargestInput
|
||||
if (T->input > LargestInput)
|
||||
LargestInput = T->input;
|
||||
|
||||
// Add the new transition
|
||||
stateTransitions[T->from].push_back(T);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// getTransition - Return the state when a transition is made from
|
||||
// State From with Input I. If a transition is not found, return NULL
|
||||
//
|
||||
State* DFA::getTransition(State* From, unsigned I) {
|
||||
// Do we have a transition from state From?
|
||||
if (!stateTransitions.count(From))
|
||||
return NULL;
|
||||
|
||||
// Do we have a transition from state From with Input I?
|
||||
for (SmallVector<Transition*, 16>::iterator VI =
|
||||
stateTransitions[From].begin();
|
||||
VI != stateTransitions[From].end(); ++VI)
|
||||
if ((*VI)->input == I)
|
||||
return (*VI)->to;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
bool DFA::isValidTransition(State* From, unsigned InsnClass) {
|
||||
return (getTransition(From, InsnClass) != NULL);
|
||||
}
|
||||
|
||||
|
||||
int State::currentStateNum = 0;
|
||||
int Transition::currentTransitionNum = 0;
|
||||
|
||||
DFAGen::DFAGen(RecordKeeper& R):
|
||||
TargetName(CodeGenTarget(R).getName()),
|
||||
allInsnClasses(), Records(R) {}
|
||||
|
||||
|
||||
//
|
||||
// writeTableAndAPI - Print out a table representing the DFA and the
|
||||
// associated API to create a DFA packetizer
|
||||
//
|
||||
// Format:
|
||||
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
|
||||
// transitions
|
||||
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
|
||||
// the ith state
|
||||
//
|
||||
//
|
||||
void DFA::writeTableAndAPI(raw_ostream &OS, const std::string& TargetName) {
|
||||
std::set<State*, ltState>::iterator SI = states.begin();
|
||||
// This table provides a map to the beginning of the transitions for State s
|
||||
// in DFAStateInputTable i.e.,
|
||||
std::vector<int> StateEntry(states.size());
|
||||
|
||||
OS << "namespace llvm {\n\n";
|
||||
OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
|
||||
|
||||
// Tracks the total valid transitions encountered so far. It is used
|
||||
// to construct the StateEntry table
|
||||
int ValidTransitions = 0;
|
||||
for (unsigned i = 0; i < states.size(); ++i, ++SI) {
|
||||
StateEntry[i] = ValidTransitions;
|
||||
for (unsigned j = 0; j <= LargestInput; ++j) {
|
||||
assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
|
||||
if (!isValidTransition(*SI, j))
|
||||
continue;
|
||||
|
||||
OS << "{" << j << ", "
|
||||
<< getTransition(*SI, j)->stateNum
|
||||
<< "}, ";
|
||||
++ValidTransitions;
|
||||
}
|
||||
|
||||
/* If there are no valid transitions from this stage, we need a sentinel
|
||||
transition */
|
||||
if (ValidTransitions == StateEntry[i])
|
||||
OS << "{-1, -1},";
|
||||
|
||||
OS << "\n";
|
||||
}
|
||||
OS << "};\n\n";
|
||||
OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
|
||||
|
||||
// Multiply i by 2 since each entry in DFAStateInputTable is a set of
|
||||
// two numbers
|
||||
for (unsigned i = 0; i < states.size(); ++i)
|
||||
OS << StateEntry[i] << ", ";
|
||||
|
||||
OS << "\n};\n";
|
||||
OS << "} // namespace\n";
|
||||
|
||||
|
||||
//
|
||||
// Emit DFA Packetizer tables if the target is a VLIW machine
|
||||
//
|
||||
std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
|
||||
OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
|
||||
OS << "namespace llvm {\n";
|
||||
OS << "DFAPacketizer* " << SubTargetClassName << "::"
|
||||
<< "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
|
||||
<< " return new DFAPacketizer(IID, " << TargetName
|
||||
<< "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
|
||||
OS << "} // End llvm namespace \n";
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// collectAllInsnClasses - Populate allInsnClasses which is a set of units
|
||||
// used in each stage.
|
||||
//
|
||||
void DFAGen::collectAllInsnClasses(const std::string &Name,
|
||||
Record *ItinData,
|
||||
unsigned &NStages,
|
||||
raw_ostream &OS) {
|
||||
// Collect processor itineraries
|
||||
std::vector<Record*> ProcItinList =
|
||||
Records.getAllDerivedDefinitions("ProcessorItineraries");
|
||||
|
||||
// If just no itinerary then don't bother
|
||||
if (ProcItinList.size() < 2)
|
||||
return;
|
||||
std::map<std::string, unsigned> NameToBitsMap;
|
||||
|
||||
// Parse functional units for all the itineraries.
|
||||
for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
|
||||
Record *Proc = ProcItinList[i];
|
||||
std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
|
||||
|
||||
// Convert macros to bits for each stage
|
||||
for (unsigned i = 0, N = FUs.size(); i < N; ++i)
|
||||
NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
|
||||
}
|
||||
|
||||
const std::vector<Record*> &StageList =
|
||||
ItinData->getValueAsListOfDefs("Stages");
|
||||
|
||||
// The number of stages
|
||||
NStages = StageList.size();
|
||||
|
||||
// For each unit
|
||||
unsigned UnitBitValue = 0;
|
||||
|
||||
// Compute the bitwise or of each unit used in this stage
|
||||
for (unsigned i = 0; i < NStages; ++i) {
|
||||
const Record *Stage = StageList[i];
|
||||
|
||||
// Get unit list
|
||||
const std::vector<Record*> &UnitList =
|
||||
Stage->getValueAsListOfDefs("Units");
|
||||
|
||||
for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
|
||||
// Conduct bitwise or
|
||||
std::string UnitName = UnitList[j]->getName();
|
||||
assert(NameToBitsMap.count(UnitName));
|
||||
UnitBitValue |= NameToBitsMap[UnitName];
|
||||
}
|
||||
|
||||
if (UnitBitValue != 0)
|
||||
allInsnClasses.insert(UnitBitValue);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Run the worklist algorithm to generate the DFA
|
||||
//
|
||||
void DFAGen::run(raw_ostream &OS) {
|
||||
EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
|
||||
|
||||
// Collect processor iteraries
|
||||
std::vector<Record*> ProcItinList =
|
||||
Records.getAllDerivedDefinitions("ProcessorItineraries");
|
||||
|
||||
//
|
||||
// Collect the instruction classes
|
||||
//
|
||||
for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
|
||||
Record *Proc = ProcItinList[i];
|
||||
|
||||
// Get processor itinerary name
|
||||
const std::string &Name = Proc->getName();
|
||||
|
||||
// Skip default
|
||||
if (Name == "NoItineraries")
|
||||
continue;
|
||||
|
||||
// Sanity check for at least one instruction itinerary class
|
||||
unsigned NItinClasses =
|
||||
Records.getAllDerivedDefinitions("InstrItinClass").size();
|
||||
if (NItinClasses == 0)
|
||||
return;
|
||||
|
||||
// Get itinerary data list
|
||||
std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
|
||||
|
||||
// Collect instruction classes for all itinerary data
|
||||
for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
|
||||
Record *ItinData = ItinDataList[j];
|
||||
unsigned NStages;
|
||||
collectAllInsnClasses(Name, ItinData, NStages, OS);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Run a worklist algorithm to generate the DFA
|
||||
//
|
||||
DFA D;
|
||||
State* Initial = new State;
|
||||
Initial->isInitial = true;
|
||||
Initial->stateInfo.insert(0x0);
|
||||
D.addState(Initial);
|
||||
SmallVector<State*, 32> WorkList;
|
||||
std::map<std::set<unsigned>, State*> Visited;
|
||||
|
||||
WorkList.push_back(Initial);
|
||||
|
||||
//
|
||||
// Worklist algorithm to create a DFA for processor resource tracking
|
||||
// C = {set of InsnClasses}
|
||||
// Begin with initial node in worklist. Initial node does not have
|
||||
// any consumed resources,
|
||||
// ResourceState = 0x0
|
||||
// Visited = {}
|
||||
// While worklist != empty
|
||||
// S = first element of worklist
|
||||
// For every instruction class C
|
||||
// if we can accommodate C in S:
|
||||
// S' = state with resource states = {S Union C}
|
||||
// Add a new transition: S x C -> S'
|
||||
// If S' is not in Visited:
|
||||
// Add S' to worklist
|
||||
// Add S' to Visited
|
||||
//
|
||||
while (!WorkList.empty()) {
|
||||
State* current = WorkList.pop_back_val();
|
||||
for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
|
||||
CE = allInsnClasses.end(); CI != CE; ++CI) {
|
||||
unsigned InsnClass = *CI;
|
||||
|
||||
std::set<unsigned> NewStateResources;
|
||||
//
|
||||
// If we haven't already created a transition for this input
|
||||
// and the state can accommodate this InsnClass, create a transition
|
||||
//
|
||||
if (!D.getTransition(current, InsnClass) &&
|
||||
current->canAddInsnClass(InsnClass, NewStateResources)) {
|
||||
State* NewState = NULL;
|
||||
|
||||
//
|
||||
// If we have seen this state before, then do not create a new state
|
||||
//
|
||||
//
|
||||
std::map<std::set<unsigned>, State*>::iterator VI;
|
||||
if ((VI = Visited.find(NewStateResources)) != Visited.end())
|
||||
NewState = VI->second;
|
||||
else {
|
||||
NewState = new State;
|
||||
NewState->stateInfo = NewStateResources;
|
||||
D.addState(NewState);
|
||||
Visited[NewStateResources] = NewState;
|
||||
WorkList.push_back(NewState);
|
||||
}
|
||||
|
||||
Transition* NewTransition = new Transition(current, InsnClass,
|
||||
NewState);
|
||||
D.addTransition(NewTransition);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Print out the table
|
||||
D.writeTableAndAPI(OS, TargetName);
|
||||
}
|
|
@ -0,0 +1,54 @@
|
|||
//===- DFAPacketizerEmitter.h - Packetization DFA for a VLIW machine-------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This class parses the Schedule.td file and produces an API that can be used
|
||||
// to reason about whether an instruction can be added to a packet on a VLIW
|
||||
// architecture. The class internally generates a deterministic finite
|
||||
// automaton (DFA) that models all possible mappings of machine instructions
|
||||
// to functional units as instructions are added to a packet.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/ADT/DenseSet.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/CodeGen/Passes.h"
|
||||
#include "llvm/TableGen/TableGenBackend.h"
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
namespace llvm {
|
||||
//
|
||||
// class DFAGen: class that generates and prints out the DFA for resource
|
||||
// tracking
|
||||
//
|
||||
class DFAGen : public TableGenBackend {
|
||||
private:
|
||||
std::string TargetName;
|
||||
//
|
||||
// allInsnClasses is the set of all possible resources consumed by an
|
||||
// InstrStage
|
||||
//
|
||||
DenseSet<unsigned> allInsnClasses;
|
||||
RecordKeeper &Records;
|
||||
|
||||
public:
|
||||
DFAGen(RecordKeeper& R);
|
||||
|
||||
//
|
||||
// collectAllInsnClasses: Populate allInsnClasses which is a set of units
|
||||
// used in each stage.
|
||||
//
|
||||
void collectAllInsnClasses(const std::string &Name,
|
||||
Record *ItinData,
|
||||
unsigned &NStages,
|
||||
raw_ostream &OS);
|
||||
|
||||
void run(raw_ostream &OS);
|
||||
};
|
||||
}
|
|
@ -711,9 +711,13 @@ void SubtargetEmitter::run(raw_ostream &OS) {
|
|||
|
||||
std::string ClassName = Target + "GenSubtargetInfo";
|
||||
OS << "namespace llvm {\n";
|
||||
OS << "class DFAPacketizer;\n";
|
||||
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
|
||||
<< " explicit " << ClassName << "(StringRef TT, StringRef CPU, "
|
||||
<< "StringRef FS);\n"
|
||||
<< "public:\n"
|
||||
<< " DFAPacketizer* createDFAPacketizer(const InstrItineraryData* IID)"
|
||||
<< " const;\n"
|
||||
<< "};\n";
|
||||
OS << "} // End llvm namespace \n";
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include "CallingConvEmitter.h"
|
||||
#include "CodeEmitterGen.h"
|
||||
#include "DAGISelEmitter.h"
|
||||
#include "DFAPacketizerEmitter.h"
|
||||
#include "DisassemblerEmitter.h"
|
||||
#include "EDEmitter.h"
|
||||
#include "FastISelEmitter.h"
|
||||
|
@ -47,6 +48,7 @@ enum ActionType {
|
|||
GenPseudoLowering,
|
||||
GenCallingConv,
|
||||
GenDAGISel,
|
||||
GenDFAPacketizer,
|
||||
GenFastISel,
|
||||
GenSubtarget,
|
||||
GenIntrinsic,
|
||||
|
@ -79,6 +81,8 @@ namespace {
|
|||
"Generate assembly instruction matcher"),
|
||||
clEnumValN(GenDAGISel, "gen-dag-isel",
|
||||
"Generate a DAG instruction selector"),
|
||||
clEnumValN(GenDFAPacketizer, "gen-dfa-packetizer",
|
||||
"Generate DFA Packetizer for VLIW targets"),
|
||||
clEnumValN(GenFastISel, "gen-fast-isel",
|
||||
"Generate a \"fast\" instruction selector"),
|
||||
clEnumValN(GenSubtarget, "gen-subtarget",
|
||||
|
@ -134,6 +138,9 @@ public:
|
|||
case GenDAGISel:
|
||||
DAGISelEmitter(Records).run(OS);
|
||||
break;
|
||||
case GenDFAPacketizer:
|
||||
DFAGen(Records).run(OS);
|
||||
break;
|
||||
case GenFastISel:
|
||||
FastISelEmitter(Records).run(OS);
|
||||
break;
|
||||
|
|
Loading…
Reference in New Issue