Reverted r332654 as it has broken some buildbots and left unfixed for a long time.

The introduced problem is:
llvm.src/lib/Transforms/Vectorize/VPlanVerifier.cpp:29:13: error: unused function 'hasDuplicates' [-Werror,-Wunused-function]
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
            ^

llvm-svn: 332747
This commit is contained in:
Galina Kistanova 2018-05-18 18:14:06 +00:00
parent 0edca4f505
commit 083ea389d6
9 changed files with 43 additions and 839 deletions

View File

@ -5,8 +5,6 @@ add_llvm_library(LLVMVectorize
SLPVectorizer.cpp SLPVectorizer.cpp
Vectorize.cpp Vectorize.cpp
VPlan.cpp VPlan.cpp
VPlanHCFGBuilder.cpp
VPlanVerifier.cpp
ADDITIONAL_HEADER_DIRS ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms ${LLVM_MAIN_INCLUDE_DIR}/llvm/Transforms

View File

@ -39,94 +39,23 @@ private:
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
VPInstruction *createInstruction(unsigned Opcode, VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands) { std::initializer_list<VPValue *> Operands) {
VPInstruction *Instr = new VPInstruction(Opcode, Operands); VPInstruction *Instr = new VPInstruction(Opcode, Operands);
if (BB)
BB->insert(Instr, InsertPt); BB->insert(Instr, InsertPt);
return Instr; return Instr;
} }
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands) {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
}
public: public:
VPBuilder() {} VPBuilder() {}
/// Clear the insertion point: created instructions will not be inserted into /// This specifies that created VPInstructions should be appended to
/// a block. /// the end of the specified block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) { void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point"); assert(TheBB && "Attempting to set a null insert point");
BB = TheBB; BB = TheBB;
InsertPt = BB->end(); InsertPt = BB->end();
} }
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// Insert and return the specified instruction.
VPInstruction *insert(VPInstruction *I) const {
BB->insert(I, InsertPt);
return I;
}
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr) {
VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPValue *createNaryOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
Instruction *Inst = nullptr) {
return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
}
VPValue *createNot(VPValue *Operand) { VPValue *createNot(VPValue *Operand) {
return createInstruction(VPInstruction::Not, {Operand}); return createInstruction(VPInstruction::Not, {Operand});
} }
@ -138,29 +67,9 @@ public:
VPValue *createOr(VPValue *LHS, VPValue *RHS) { VPValue *createOr(VPValue *LHS, VPValue *RHS) {
return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
} }
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
}; };
/// TODO: The following VectorizationFactor was pulled out of /// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with /// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor and VectorizationCostTy. /// VectorizerParams::VectorizationFactor and VectorizationCostTy.

View File

@ -56,7 +56,6 @@
#include "llvm/Transforms/Vectorize/LoopVectorize.h" #include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h" #include "LoopVectorizationPlanner.h"
#include "VPlanHCFGBuilder.h"
#include "llvm/ADT/APInt.h" #include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseMap.h"
@ -245,17 +244,6 @@ static cl::opt<bool> EnableVPlanNativePath(
cl::desc("Enable VPlan-native vectorization path with " cl::desc("Enable VPlan-native vectorization path with "
"support for outer loop vectorization.")); "support for outer loop vectorization."));
// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
"vplan-build-stress-test", cl::init(false), cl::Hidden,
cl::desc(
"Build VPlan for every supported loop nest in the function and bail "
"out right after the build (stress test the VPlan H-CFG construction "
"in the VPlan-native vectorization path)."));
/// A helper function for converting Scalar types to vector types. /// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return /// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type. /// the scalar type.
@ -1665,11 +1653,8 @@ static void collectSupportedLoops(Loop &L, LoopInfo *LI,
OptimizationRemarkEmitter *ORE, OptimizationRemarkEmitter *ORE,
SmallVectorImpl<Loop *> &V) { SmallVectorImpl<Loop *> &V) {
// Collect inner loops and outer loops without irreducible control flow. For // Collect inner loops and outer loops without irreducible control flow. For
// now, only collect outer loops that have explicit vectorization hints. If we // now, only collect outer loops that have explicit vectorization hints.
// are stress testing the VPlan H-CFG construction, we collect the outermost if (L.empty() || (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
// loop of every loop nest.
if (L.empty() || VPlanBuildStressTest ||
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
LoopBlocksRPO RPOT(&L); LoopBlocksRPO RPOT(&L);
RPOT.perform(LI); RPOT.perform(LI);
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
@ -6269,7 +6254,7 @@ void LoopVectorizationCostModel::collectValuesToIgnore() {
VectorizationFactor VectorizationFactor
LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
unsigned UserVF) { unsigned UserVF) {
// Width 1 means no vectorization, cost 0 means uncomputed cost. // Width 1 means no vectorize, cost 0 means uncomputed cost.
const VectorizationFactor NoVectorization = {1U, 0U}; const VectorizationFactor NoVectorization = {1U, 0U};
// Outer loop handling: They may require CFG and instruction level // Outer loop handling: They may require CFG and instruction level
@ -6277,22 +6262,12 @@ LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
// Since we cannot modify the incoming IR, we need to build VPlan upfront in // Since we cannot modify the incoming IR, we need to build VPlan upfront in
// the vectorization pipeline. // the vectorization pipeline.
if (!OrigLoop->empty()) { if (!OrigLoop->empty()) {
// TODO: If UserVF is not provided, we set UserVF to 4 for stress testing.
// This won't be necessary when UserVF is not required in the VPlan-native
// path.
if (VPlanBuildStressTest && !UserVF)
UserVF = 4;
assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
assert(UserVF && "Expected UserVF for outer loop vectorization."); assert(UserVF && "Expected UserVF for outer loop vectorization.");
assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
buildVPlans(UserVF, UserVF); buildVPlans(UserVF, UserVF);
// For VPlan build stress testing, we bail out after VPlan construction.
if (VPlanBuildStressTest)
return NoVectorization;
return {UserVF, 0}; return {UserVF, 0};
} }
@ -6305,7 +6280,7 @@ LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
VectorizationFactor VectorizationFactor
LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
assert(OrigLoop->empty() && "Inner loop expected."); assert(OrigLoop->empty() && "Inner loop expected.");
// Width 1 means no vectorization, cost 0 means uncomputed cost. // Width 1 means no vectorize, cost 0 means uncomputed cost.
const VectorizationFactor NoVectorization = {1U, 0U}; const VectorizationFactor NoVectorization = {1U, 0U};
Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
@ -6831,11 +6806,9 @@ VPBasicBlock *LoopVectorizationPlanner::handleReplication(
"VPBB has successors when handling predicated replication."); "VPBB has successors when handling predicated replication.");
// Record predicated instructions for above packing optimizations. // Record predicated instructions for above packing optimizations.
PredInst2Recipe[I] = Recipe; PredInst2Recipe[I] = Recipe;
VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); VPBlockBase *Region =
VPBlockUtils::insertBlockAfter(Region, VPBB); VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan));
auto *RegSucc = new VPBasicBlock(); return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock()));
VPBlockUtils::insertBlockAfter(RegSucc, Region);
return RegSucc;
} }
VPRegionBlock * VPRegionBlock *
@ -6861,8 +6834,8 @@ LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr,
// Note: first set Entry as region entry and then connect successors starting // Note: first set Entry as region entry and then connect successors starting
// from it in order, to propagate the "parent" of each VPBasicBlock. // from it in order, to propagate the "parent" of each VPBasicBlock.
VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, Entry); Entry->setTwoSuccessors(Pred, Exit);
VPBlockUtils::connectBlocks(Pred, Exit); Pred->setOneSuccessor(Exit);
return Region; return Region;
} }
@ -6879,11 +6852,6 @@ LoopVectorizationPlanner::buildVPlan(VFRange &Range,
// Create new empty VPlan // Create new empty VPlan
auto Plan = llvm::make_unique<VPlan>(); auto Plan = llvm::make_unique<VPlan>();
// Build hierarchical CFG
VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI);
HCFGBuilder.buildHierarchicalCFG(*Plan.get());
return Plan; return Plan;
} }
@ -6925,7 +6893,7 @@ LoopVectorizationPlanner::buildVPlan(VFRange &Range,
// ingredients and fill a new VPBasicBlock. // ingredients and fill a new VPBasicBlock.
unsigned VPBBsForBB = 0; unsigned VPBBsForBB = 0;
auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); VPBB->setOneSuccessor(FirstVPBBForBB);
VPBB = FirstVPBBForBB; VPBB = FirstVPBBForBB;
Builder.setInsertPoint(VPBB); Builder.setInsertPoint(VPBB);
@ -7029,7 +6997,7 @@ LoopVectorizationPlanner::buildVPlan(VFRange &Range,
VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
assert(PreEntry->empty() && "Expecting empty pre-entry block."); assert(PreEntry->empty() && "Expecting empty pre-entry block.");
VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
VPBlockUtils::disconnectBlocks(PreEntry, Entry); PreEntry->disconnectSuccessor(Entry);
delete PreEntry; delete PreEntry;
std::string PlanName; std::string PlanName;

View File

@ -306,8 +306,6 @@ struct VPTransformState {
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase { class VPBlockBase {
friend class VPBlockUtils;
private: private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
@ -374,7 +372,6 @@ public:
/// for any other purpose, as the values may change as LLVM evolves. /// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPBlockID() const { return SubclassID; } unsigned getVPBlockID() const { return SubclassID; }
VPRegionBlock *getParent() { return Parent; }
const VPRegionBlock *getParent() const { return Parent; } const VPRegionBlock *getParent() const { return Parent; }
void setParent(VPRegionBlock *P) { Parent = P; } void setParent(VPRegionBlock *P) { Parent = P; }
@ -409,9 +406,6 @@ public:
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
} }
size_t getNumSuccessors() const { return Successors.size(); }
size_t getNumPredecessors() const { return Predecessors.size(); }
/// An Enclosing Block of a block B is any block containing B, including B /// An Enclosing Block of a block B is any block containing B, including B
/// itself. \return the closest enclosing block starting from "this", which /// itself. \return the closest enclosing block starting from "this", which
/// has successors. \return the root enclosing block if all enclosing blocks /// has successors. \return the root enclosing block if all enclosing blocks
@ -455,31 +449,34 @@ public:
return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
} }
/// Set a given VPBlockBase \p Successor as the single successor of this /// Sets a given VPBlockBase \p Successor as the single successor and \return
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. /// \p Successor. The parent of this Block is copied to be the parent of
/// This VPBlockBase must have no successors. /// \p Successor.
void setOneSuccessor(VPBlockBase *Successor) { VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
assert(Successors.empty() && "Setting one successor when others exist."); assert(Successors.empty() && "Setting one successor when others exist.");
appendSuccessor(Successor); appendSuccessor(Successor);
Successor->appendPredecessor(this);
Successor->Parent = Parent;
return Successor;
} }
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two /// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
/// successors of this VPBlockBase. This VPBlockBase is not added as /// successors. The parent of this Block is copied to be the parent of both
/// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no /// \p IfTrue and \p IfFalse.
/// successors.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
assert(Successors.empty() && "Setting two successors when others exist."); assert(Successors.empty() && "Setting two successors when others exist.");
appendSuccessor(IfTrue); appendSuccessor(IfTrue);
appendSuccessor(IfFalse); appendSuccessor(IfFalse);
IfTrue->appendPredecessor(this);
IfFalse->appendPredecessor(this);
IfTrue->Parent = Parent;
IfFalse->Parent = Parent;
} }
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. void disconnectSuccessor(VPBlockBase *Successor) {
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added assert(Successor && "Successor to disconnect is null.");
/// as successor of any VPBasicBlock in \p NewPreds. removeSuccessor(Successor);
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { Successor->removePredecessor(this);
assert(Predecessors.empty() && "Block predecessors already set.");
for (auto *Pred : NewPreds)
appendPredecessor(Pred);
} }
/// The method which generates the output IR that correspond to this /// The method which generates the output IR that correspond to this
@ -557,13 +554,10 @@ private:
void generateInstruction(VPTransformState &State, unsigned Part); void generateInstruction(VPTransformState &State, unsigned Part);
public: public:
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
: VPUser(VPValue::VPInstructionSC, Operands), : VPUser(VPValue::VPInstructionSC, Operands),
VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
/// Method to support type inquiry through isa, cast, and dyn_cast. /// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPValue *V) { static inline bool classof(const VPValue *V) {
return V->getVPValueID() == VPValue::VPInstructionSC; return V->getVPValueID() == VPValue::VPInstructionSC;
@ -969,9 +963,6 @@ public:
Entry->setParent(this); Entry->setParent(this);
Exit->setParent(this); Exit->setParent(this);
} }
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
IsReplicator(IsReplicator) {}
~VPRegionBlock() override { ~VPRegionBlock() override {
if (Entry) if (Entry)
@ -986,27 +977,9 @@ public:
const VPBlockBase *getEntry() const { return Entry; } const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *getEntry() { return Entry; } VPBlockBase *getEntry() { return Entry; }
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
/// EntryBlock must have no predecessors.
void setEntry(VPBlockBase *EntryBlock) {
assert(EntryBlock->getPredecessors().empty() &&
"Entry block cannot have predecessors.");
Entry = EntryBlock;
EntryBlock->setParent(this);
}
const VPBlockBase *getExit() const { return Exit; } const VPBlockBase *getExit() const { return Exit; }
VPBlockBase *getExit() { return Exit; } VPBlockBase *getExit() { return Exit; }
/// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
/// ExitBlock must have no successors.
void setExit(VPBlockBase *ExitBlock) {
assert(ExitBlock->getSuccessors().empty() &&
"Exit block cannot have successors.");
Exit = ExitBlock;
ExitBlock->setParent(this);
}
/// An indicator whether this region is to generate multiple replicated /// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases. /// instances of output IR corresponding to its VPBlockBases.
bool isReplicator() const { return IsReplicator; } bool isReplicator() const { return IsReplicator; }
@ -1034,13 +1007,6 @@ private:
/// Holds the name of the VPlan, for printing. /// Holds the name of the VPlan, for printing.
std::string Name; std::string Name;
/// Holds all the external definitions created for this VPlan.
// TODO: Introduce a specific representation for external definitions in
// VPlan. External definitions must be immutable and hold a pointer to its
// underlying IR that will be used to implement its structural comparison
// (operators '==' and '<').
SmallSet<VPValue *, 16> VPExternalDefs;
/// Holds a mapping between Values and their corresponding VPValue inside /// Holds a mapping between Values and their corresponding VPValue inside
/// VPlan. /// VPlan.
Value2VPValueTy Value2VPValue; Value2VPValueTy Value2VPValue;
@ -1053,8 +1019,6 @@ public:
VPBlockBase::deleteCFG(Entry); VPBlockBase::deleteCFG(Entry);
for (auto &MapEntry : Value2VPValue) for (auto &MapEntry : Value2VPValue)
delete MapEntry.second; delete MapEntry.second;
for (VPValue *Def : VPExternalDefs)
delete Def;
} }
/// Generate the IR code for this VPlan. /// Generate the IR code for this VPlan.
@ -1073,12 +1037,6 @@ public:
void setName(const Twine &newName) { Name = newName.str(); } void setName(const Twine &newName) { Name = newName.str(); }
/// Add \p VPVal to the pool of external definitions if it's not already
/// in the pool.
void addExternalDef(VPValue *VPVal) {
VPExternalDefs.insert(VPVal);
}
void addVPValue(Value *V) { void addVPValue(Value *V) {
assert(V && "Trying to add a null Value to VPlan"); assert(V && "Trying to add a null Value to VPlan");
assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
@ -1226,70 +1184,6 @@ template <> struct GraphTraits<Inverse<VPBlockBase *>> {
} }
}; };
//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//
/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
VPBlockUtils() = delete;
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
/// NewBlock as successor of \p BlockPtr and \p Block as predecessor of \p
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p NewBlock
/// must have neither successors nor predecessors.
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
assert(NewBlock->getSuccessors().empty() &&
"Can't insert new block with successors.");
// TODO: move successors from BlockPtr to NewBlock when this functionality
// is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
// already has successors.
BlockPtr->setOneSuccessor(NewBlock);
NewBlock->setPredecessors({BlockPtr});
NewBlock->setParent(BlockPtr->getParent());
}
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
/// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
/// and \p IfTrue and \p IfFalse must have neither successors nor
/// predecessors.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
VPBlockBase *BlockPtr) {
assert(IfTrue->getSuccessors().empty() &&
"Can't insert IfTrue with successors.");
assert(IfFalse->getSuccessors().empty() &&
"Can't insert IfFalse with successors.");
BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
IfTrue->setPredecessors({BlockPtr});
IfFalse->setPredecessors({BlockPtr});
IfTrue->setParent(BlockPtr->getParent());
IfFalse->setParent(BlockPtr->getParent());
}
/// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
/// the successors of \p From and \p From to the predecessors of \p To. Both
/// VPBlockBases must have the same parent, which can be null. Both
/// VPBlockBases can be already connected to other VPBlockBases.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
assert((From->getParent() == To->getParent()) &&
"Can't connect two block with different parents");
assert(From->getNumSuccessors() < 2 &&
"Blocks can't have more than two successors.");
From->appendSuccessor(To);
To->appendPredecessor(From);
}
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
/// from the successors of \p From and \p From from the predecessors of \p To.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
assert(To && "Successor to disconnect is null.");
From->removeSuccessor(To);
To->removePredecessor(From);
}
};
} // end namespace llvm } // end namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H

View File

@ -1,320 +0,0 @@
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the construction of a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR. This construction comprises the following
/// components and steps:
//
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
/// in the plain CFG.
/// NOTE: At this point, there is a direct correspondence between all the
/// VPBasicBlocks created for the initial plain CFG and the incoming
/// BasicBlocks. However, this might change in the future.
///
//===----------------------------------------------------------------------===//
#include "VPlanHCFGBuilder.h"
#include "LoopVectorizationPlanner.h"
#include "llvm/Analysis/LoopIterator.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
private:
// The outermost loop of the input loop nest considered for vectorization.
Loop *TheLoop;
// Loop Info analysis.
LoopInfo *LI;
// Vectorization plan that we are working on.
VPlan &Plan;
// Output Top Region.
VPRegionBlock *TopRegion = nullptr;
// Builder of the VPlan instruction-level representation.
VPBuilder VPIRBuilder;
// NOTE: The following maps are intentionally destroyed after the plain CFG
// construction because subsequent VPlan-to-VPlan transformation may
// invalidate them.
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
// Map incoming Value definitions to their newly-created VPValues.
DenseMap<Value *, VPValue *> IRDef2VPValue;
// Hold phi node's that need to be fixed once the plain CFG has been built.
SmallVector<PHINode *, 8> PhisToFix;
// Utility functions.
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
void fixPhiNodes();
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
bool isExternalDef(Value *Val);
VPValue *getOrCreateVPOperand(Value *IRVal);
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
public:
PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
: TheLoop(Lp), LI(LI), Plan(P) {}
// Build the plain CFG and return its Top Region.
VPRegionBlock *buildPlainCFG();
};
// Return true if \p Inst is an incoming Instruction to be ignored in the VPlan
// representation.
static bool isInstructionToIgnore(Instruction *Inst) {
return isa<BranchInst>(Inst);
}
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
SmallVector<VPBlockBase *, 8> VPBBPreds;
// Collect VPBB predecessors.
for (BasicBlock *Pred : predecessors(BB))
VPBBPreds.push_back(getOrCreateVPBB(Pred));
VPBB->setPredecessors(VPBBPreds);
}
// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixPhiNodes() {
for (auto *Phi : PhisToFix) {
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
VPValue *VPVal = IRDef2VPValue[Phi];
assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
auto *VPPhi = cast<VPInstruction>(VPVal);
assert(VPPhi->getNumOperands() == 0 &&
"Expected VPInstruction with no operands.");
for (Value *Op : Phi->operands())
VPPhi->addOperand(getOrCreateVPOperand(Op));
}
}
// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
// existing one if it was already created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
auto BlockIt = BB2VPBB.find(BB);
if (BlockIt != BB2VPBB.end())
// Retrieve existing VPBB.
return BlockIt->second;
// Create new VPBB.
DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
BB2VPBB[BB] = VPBB;
VPBB->setParent(TopRegion);
return VPBB;
}
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
// outermost loop exits.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
// All the Values that are not Instructions are considered external
// definitions for now.
Instruction *Inst = dyn_cast<Instruction>(Val);
if (!Inst)
return true;
BasicBlock *InstParent = Inst->getParent();
assert(InstParent && "Expected instruction parent.");
// Check whether Instruction definition is in loop PH.
BasicBlock *PH = TheLoop->getLoopPreheader();
assert(PH && "Expected loop pre-header.");
if (InstParent == PH)
// Instruction definition is in outermost loop PH.
return false;
// Check whether Instruction definition is in the loop exit.
BasicBlock *Exit = TheLoop->getUniqueExitBlock();
assert(Exit && "Expected loop with single exit.");
if (InstParent == Exit) {
// Instruction definition is in outermost loop exit.
return false;
}
// Check whether Instruction definition is in loop body.
return !TheLoop->contains(Inst);
}
// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
auto VPValIt = IRDef2VPValue.find(IRVal);
if (VPValIt != IRDef2VPValue.end())
// Operand has an associated VPInstruction or VPValue that was previously
// created.
return VPValIt->second;
// Operand doesn't have a previously created VPInstruction/VPValue. This
// means that operand is:
// A) a definition external to VPlan,
// B) any other Value without specific representation in VPlan.
// For now, we use VPValue to represent A and B and classify both as external
// definitions. We may introduce specific VPValue subclasses for them in the
// future.
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
// A and B: Create VPValue and add it to the pool of external definitions and
// to the Value->VPValue map.
VPValue *NewVPVal = new VPValue(IRVal);
Plan.addExternalDef(NewVPVal);
IRDef2VPValue[IRVal] = NewVPVal;
return NewVPVal;
}
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
BasicBlock *BB) {
VPIRBuilder.setInsertPoint(VPBB);
for (Instruction &InstRef : *BB) {
Instruction *Inst = &InstRef;
if (isInstructionToIgnore(Inst))
continue;
// There should't be any VPValue for Inst at this point. Otherwise, we
// visited Inst when we shouldn't, breaking the RPO traversal order.
assert(!IRDef2VPValue.count(Inst) &&
"Instruction shouldn't have been visited.");
VPInstruction *NewVPInst;
if (PHINode *Phi = dyn_cast<PHINode>(Inst)) {
// Phi node's operands may have not been visited at this point. We create
// an empty VPInstruction that we will fix once the whole plain CFG has
// been built.
NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
Inst->getOpcode(), {} /*No operands*/, Inst));
PhisToFix.push_back(Phi);
} else {
// Translate LLVM-IR operands into VPValue operands and set them in the
// new VPInstruction.
SmallVector<VPValue *, 4> VPOperands;
for (Value *Op : Inst->operands())
VPOperands.push_back(getOrCreateVPOperand(Op));
// Build VPInstruction for any arbitraty Instruction without specific
// representation in VPlan.
NewVPInst = cast<VPInstruction>(
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
}
IRDef2VPValue[Inst] = NewVPInst;
}
}
// Main interface to build the plain CFG.
VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
// 1. Create the Top Region. It will be the parent of all VPBBs.
TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
// 2. Scan the body of the loop in a topological order to visit each basic
// block after having visited its predecessor basic blocks. Create a VPBB for
// each BB and link it to its successor and predecessor VPBBs. Note that
// predecessors must be set in the same order as they are in the incomming IR.
// Otherwise, there might be problems with existing phi nodes and algorithm
// based on predecessors traversal.
// Loop PH needs to be explicitly visited since it's not taken into account by
// LoopBlocksDFS.
BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
"Unexpected loop preheader");
VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
// Create empty VPBB for Loop H so that we can link PH->H.
VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
// Preheader's predecessors will be set during the loop RPO traversal below.
PreheaderVPBB->setOneSuccessor(HeaderVPBB);
LoopBlocksRPO RPO(TheLoop);
RPO.perform(LI);
for (BasicBlock *BB : RPO) {
// Create or retrieve the VPBasicBlock for this BB and create its
// VPInstructions.
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
createVPInstructionsForVPBB(VPBB, BB);
// Set VPBB successors. We create empty VPBBs for successors if they don't
// exist already. Recipes will be created when the successor is visited
// during the RPO traversal.
TerminatorInst *TI = BB->getTerminator();
assert(TI && "Terminator expected.");
unsigned NumSuccs = TI->getNumSuccessors();
if (NumSuccs == 1) {
VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
assert(SuccVPBB && "VPBB Successor not found.");
VPBB->setOneSuccessor(SuccVPBB);
} else if (NumSuccs == 2) {
VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
assert(SuccVPBB0 && "Successor 0 not found.");
VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
assert(SuccVPBB1 && "Successor 1 not found.");
VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1);
} else
llvm_unreachable("Number of successors not supported.");
// Set VPBB predecessors in the same order as they are in the incoming BB.
setVPBBPredsFromBB(VPBB, BB);
}
// 3. Process outermost loop exit. We created an empty VPBB for the loop
// single exit BB during the RPO traversal of the loop body but Instructions
// weren't visited because it's not part of the the loop.
BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
assert(LoopExitBB && "Loops with multiple exits are not supported.");
VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
// Loop exit was already set as successor of the loop exiting BB.
// We only set its predecessor VPBB now.
setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
// 4. The whole CFG has been built at this point so all the input Values must
// have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
// VPlan operands.
fixPhiNodes();
// 5. Final Top Region setup. Set outermost loop pre-header and single exit as
// Top Region entry and exit.
TopRegion->setEntry(PreheaderVPBB);
TopRegion->setExit(LoopExitVPBB);
return TopRegion;
}
// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) {
// Build Top Region enclosing the plain CFG and set it as VPlan entry.
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG();
Plan.setEntry(TopRegion);
DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
Verifier.verifyHierarchicalCFG(TopRegion);
}

View File

@ -1,55 +0,0 @@
//===-- VPlanHCFGBuilder.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the VPlanHCFGBuilder class which contains the public
/// interface (buildHierarchicalCFG) to build a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR.
///
/// A H-CFG in VPlan is a control-flow graph whose nodes are VPBasicBlocks
/// and/or VPRegionBlocks (i.e., other H-CFGs). The outermost H-CFG of a VPlan
/// consists of a VPRegionBlock, denoted Top Region, which encloses any other
/// VPBlockBase in the H-CFG. This guarantees that any VPBlockBase in the H-CFG
/// other than the Top Region will have a parent VPRegionBlock and allows us
/// to easily add more nodes before/after the main vector loop (such as the
/// reduction epilogue).
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H
#include "VPlan.h"
#include "VPlanVerifier.h"
namespace llvm {
class Loop;
/// Main class to build the VPlan H-CFG for an incoming IR.
class VPlanHCFGBuilder {
private:
// The outermost loop of the input loop nest considered for vectorization.
Loop *TheLoop;
// Loop Info analysis.
LoopInfo *LI;
// VPlan verifier utility.
VPlanVerifier Verifier;
public:
VPlanHCFGBuilder(Loop *Lp, LoopInfo *LI) : TheLoop(Lp), LI(LI) {}
/// Build H-CFG for TheLoop and update \p Plan accordingly.
void buildHierarchicalCFG(VPlan &Plan);
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_VPLANHCFGBUILDER_H

View File

@ -37,34 +37,13 @@ class VPUser;
// coming from the input IR, instructions which VPlan will generate if executed // coming from the input IR, instructions which VPlan will generate if executed
// and live-outs which the VPlan will need to fix accordingly. // and live-outs which the VPlan will need to fix accordingly.
class VPValue { class VPValue {
friend class VPBuilder;
private: private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
SmallVector<VPUser *, 1> Users; SmallVector<VPUser *, 1> Users;
protected: protected:
// Hold the underlying Value, if any, attached to this VPValue. VPValue(const unsigned char SC) : SubclassID(SC) {}
Value *UnderlyingVal;
VPValue(const unsigned char SC, Value *UV = nullptr)
: SubclassID(SC), UnderlyingVal(UV) {}
// DESIGN PRINCIPLE: Access to the underlying IR must be strictly limited to
// the front-end and back-end of VPlan so that the middle-end is as
// independent as possible of the underlying IR. We grant access to the
// underlying IR using friendship. In that way, we should be able to use VPlan
// for multiple underlying IRs (Polly?) by providing a new VPlan front-end,
// back-end and analysis information for the new IR.
/// Return the underlying Value attached to this VPValue.
Value *getUnderlyingValue() { return UnderlyingVal; }
// Set \p Val as the underlying Value of this VPValue.
void setUnderlyingValue(Value *Val) {
assert(!UnderlyingVal && "Underlying Value is already set.");
UnderlyingVal = Val;
}
public: public:
/// An enumeration for keeping track of the concrete subclass of VPValue that /// An enumeration for keeping track of the concrete subclass of VPValue that
@ -73,7 +52,7 @@ public:
/// type identification. /// type identification.
enum { VPValueSC, VPUserSC, VPInstructionSC }; enum { VPValueSC, VPUserSC, VPInstructionSC };
VPValue(Value *UV = nullptr) : VPValue(VPValueSC, UV) {} VPValue() : SubclassID(VPValueSC) {}
VPValue(const VPValue &) = delete; VPValue(const VPValue &) = delete;
VPValue &operator=(const VPValue &) = delete; VPValue &operator=(const VPValue &) = delete;
@ -115,6 +94,11 @@ class VPUser : public VPValue {
private: private:
SmallVector<VPValue *, 2> Operands; SmallVector<VPValue *, 2> Operands;
void addOperand(VPValue *Operand) {
Operands.push_back(Operand);
Operand->addUser(*this);
}
protected: protected:
VPUser(const unsigned char SC) : VPValue(SC) {} VPUser(const unsigned char SC) : VPValue(SC) {}
VPUser(const unsigned char SC, ArrayRef<VPValue *> Operands) : VPValue(SC) { VPUser(const unsigned char SC, ArrayRef<VPValue *> Operands) : VPValue(SC) {
@ -136,11 +120,6 @@ public:
V->getVPValueID() <= VPInstructionSC; V->getVPValueID() <= VPInstructionSC;
} }
void addOperand(VPValue *Operand) {
Operands.push_back(Operand);
Operand->addUser(*this);
}
unsigned getNumOperands() const { return Operands.size(); } unsigned getNumOperands() const { return Operands.size(); }
inline VPValue *getOperand(unsigned N) const { inline VPValue *getOperand(unsigned N) const {
assert(N < Operands.size() && "Operand index out of bounds"); assert(N < Operands.size() && "Operand index out of bounds");

View File

@ -1,125 +0,0 @@
//===-- VPlanVerifier.cpp -------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the class VPlanVerifier, which contains utility functions
/// to check the consistency and invariants of a VPlan.
///
//===----------------------------------------------------------------------===//
#include "VPlanVerifier.h"
#include "llvm/ADT/DepthFirstIterator.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
static cl::opt<bool> EnableHCFGVerifier("vplan-verify-hcfg", cl::init(false),
cl::Hidden,
cl::desc("Verify VPlan H-CFG."));
/// Utility function that checks whether \p VPBlockVec has duplicate
/// VPBlockBases.
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
for (const auto *Block : VPBlockVec) {
if (VPBlockSet.count(Block))
return true;
VPBlockSet.insert(Block);
}
return false;
}
/// Helper function that verifies the CFG invariants of the VPBlockBases within
/// \p Region. Checks in this function are generic for VPBlockBases. They are
/// not specific for VPBasicBlocks or VPRegionBlocks.
static void verifyBlocksInRegion(const VPRegionBlock *Region) {
for (const VPBlockBase *VPB :
make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()),
df_iterator<const VPBlockBase *>::end(Region->getExit()))) {
// Check block's parent.
assert(VPB->getParent() == Region && "VPBlockBase has wrong parent");
// Check block's successors.
const auto &Successors = VPB->getSuccessors();
// There must be only one instance of a successor in block's successor list.
// TODO: This won't work for switch statements.
assert(!hasDuplicates(Successors) &&
"Multiple instances of the same successor.");
for (const VPBlockBase *Succ : Successors) {
// There must be a bi-directional link between block and successor.
const auto &SuccPreds = Succ->getPredecessors();
assert(std::find(SuccPreds.begin(), SuccPreds.end(), VPB) !=
SuccPreds.end() &&
"Missing predecessor link.");
(void)SuccPreds;
}
// Check block's predecessors.
const auto &Predecessors = VPB->getPredecessors();
// There must be only one instance of a predecessor in block's predecessor
// list.
// TODO: This won't work for switch statements.
assert(!hasDuplicates(Predecessors) &&
"Multiple instances of the same predecessor.");
for (const VPBlockBase *Pred : Predecessors) {
// Block and predecessor must be inside the same region.
assert(Pred->getParent() == VPB->getParent() &&
"Predecessor is not in the same region.");
// There must be a bi-directional link between block and predecessor.
const auto &PredSuccs = Pred->getSuccessors();
assert(std::find(PredSuccs.begin(), PredSuccs.end(), VPB) !=
PredSuccs.end() &&
"Missing successor link.");
(void)PredSuccs;
}
}
}
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
static void verifyRegion(const VPRegionBlock *Region) {
const VPBlockBase *Entry = Region->getEntry();
const VPBlockBase *Exit = Region->getExit();
// Entry and Exit shouldn't have any predecessor/successor, respectively.
assert(!Entry->getNumPredecessors() && "Region entry has predecessors.");
assert(!Exit->getNumSuccessors() && "Region exit has successors.");
(void)Entry;
(void)Exit;
verifyBlocksInRegion(Region);
}
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
static void verifyRegionRec(const VPRegionBlock *Region) {
verifyRegion(Region);
// Recurse inside nested regions.
for (const VPBlockBase *VPB :
make_range(df_iterator<const VPBlockBase *>::begin(Region->getEntry()),
df_iterator<const VPBlockBase *>::end(Region->getExit()))) {
if (const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB))
verifyRegionRec(SubRegion);
}
}
void VPlanVerifier::verifyHierarchicalCFG(
const VPRegionBlock *TopRegion) const {
if (!EnableHCFGVerifier)
return;
DEBUG(dbgs() << "Verifying VPlan H-CFG.\n");
assert(!TopRegion->getParent() && "VPlan Top Region should have no parent.");
verifyRegionRec(TopRegion);
}

View File

@ -1,44 +0,0 @@
//===-- VPlanVerifier.h -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file declares the class VPlanVerifier, which contains utility functions
/// to check the consistency of a VPlan. This includes the following kinds of
/// invariants:
///
/// 1. Region/Block invariants:
/// - Region's entry/exit block must have no predecessors/successors,
/// respectively.
/// - Block's parent must be the region immediately containing the block.
/// - Linked blocks must have a bi-directional link (successor/predecessor).
/// - All predecessors/successors of a block must belong to the same region.
/// - Blocks must have no duplicated successor/predecessor.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H
#include "VPlan.h"
namespace llvm {
/// Class with utility functions that can be used to check the consistency and
/// invariants of a VPlan, including the components of its H-CFG.
class VPlanVerifier {
public:
/// Verify the invariants of the H-CFG starting from \p TopRegion. The
/// verification process comprises the following steps:
/// 1. Region/Block verification: Check the Region/Block verification
/// invariants for every region in the H-CFG.
void verifyHierarchicalCFG(const VPRegionBlock *TopRegion) const;
};
} // namespace llvm
#endif //LLVM_TRANSFORMS_VECTORIZE_VPLANVERIFIER_H