[constexpr] Support for constant evaluation of __builtin_memcpy and

__builtin_memmove (in non-type-punning cases).

This is intended to permit libc++ to make std::copy etc constexpr
without sacrificing the optimization that uses memcpy on
trivially-copyable types.

__builtin_strcpy and __builtin_wcscpy are not handled by this change.
They'd be straightforward to add, but we haven't encountered a need for
them just yet.

This reinstates r338455, reverted in r338602, with a fix to avoid trying
to constant-evaluate a memcpy call if either pointer operand has an
invalid designator.

llvm-svn: 338941
This commit is contained in:
Richard Smith 2018-08-04 00:57:17 +00:00
parent e9798f787a
commit 06f71b5bd8
5 changed files with 388 additions and 55 deletions

View File

@ -471,6 +471,8 @@ BUILTIN(__builtin_wcslen, "zwC*", "nF")
BUILTIN(__builtin_wcsncmp, "iwC*wC*z", "nF")
BUILTIN(__builtin_wmemchr, "w*wC*wz", "nF")
BUILTIN(__builtin_wmemcmp, "iwC*wC*z", "nF")
BUILTIN(__builtin_wmemcpy, "w*w*wC*z", "nF")
BUILTIN(__builtin_wmemmove, "w*w*wC*z", "nF")
BUILTIN(__builtin_return_address, "v*IUi", "n")
BUILTIN(__builtin_extract_return_addr, "v*v*", "n")
BUILTIN(__builtin_frame_address, "v*IUi", "n")
@ -908,6 +910,8 @@ LIBBUILTIN(wcslen, "zwC*", "f", "wchar.h", ALL_LANGUAGES)
LIBBUILTIN(wcsncmp, "iwC*wC*z", "f", "wchar.h", ALL_LANGUAGES)
LIBBUILTIN(wmemchr, "w*wC*wz", "f", "wchar.h", ALL_LANGUAGES)
LIBBUILTIN(wmemcmp, "iwC*wC*z", "f", "wchar.h", ALL_LANGUAGES)
LIBBUILTIN(wmemcpy, "w*w*wC*z", "f", "wchar.h", ALL_LANGUAGES)
LIBBUILTIN(wmemmove,"w*w*wC*z", "f", "wchar.h", ALL_LANGUAGES)
// C99
// In some systems setjmp is a macro that expands to _setjmp. We undefine

View File

@ -163,6 +163,20 @@ def note_constexpr_unsupported_unsized_array : Note<
def note_constexpr_unsized_array_indexed : Note<
"indexing of array without known bound is not allowed "
"in a constant expression">;
def note_constexpr_memcpy_type_pun : Note<
"cannot constant evaluate '%select{memcpy|memmove}0' from object of "
"type %1 to object of type %2">;
def note_constexpr_memcpy_nontrivial : Note<
"cannot constant evaluate '%select{memcpy|memmove}0' between objects of "
"non-trivially-copyable type %1">;
def note_constexpr_memcpy_overlap : Note<
"'%select{memcpy|wmemcpy}0' between overlapping memory regions">;
def note_constexpr_memcpy_unsupported : Note<
"'%select{%select{memcpy|wmemcpy}1|%select{memmove|wmemmove}1}0' "
"not supported: %select{"
"size to copy (%4) is not a multiple of size of element type %3 (%5)|"
"source is not a contiguous array of at least %4 elements of type %3|"
"destination is not a contiguous array of at least %4 elements of type %3}2">;
def warn_integer_constant_overflow : Warning<
"overflow in expression; result is %0 with type %1">,

View File

@ -319,6 +319,25 @@ namespace {
return false;
}
/// Get the range of valid index adjustments in the form
/// {maximum value that can be subtracted from this pointer,
/// maximum value that can be added to this pointer}
std::pair<uint64_t, uint64_t> validIndexAdjustments() {
if (Invalid || isMostDerivedAnUnsizedArray())
return {0, 0};
// [expr.add]p4: For the purposes of these operators, a pointer to a
// nonarray object behaves the same as a pointer to the first element of
// an array of length one with the type of the object as its element type.
bool IsArray = MostDerivedPathLength == Entries.size() &&
MostDerivedIsArrayElement;
uint64_t ArrayIndex =
IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd;
uint64_t ArraySize =
IsArray ? getMostDerivedArraySize() : (uint64_t)1;
return {ArrayIndex, ArraySize - ArrayIndex};
}
/// Check that this refers to a valid subobject.
bool isValidSubobject() const {
if (Invalid)
@ -329,6 +348,14 @@ namespace {
/// relevant diagnostic and set the designator as invalid.
bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
/// Get the type of the designated object.
QualType getType(ASTContext &Ctx) const {
assert(!Invalid && "invalid designator has no subobject type");
return MostDerivedPathLength == Entries.size()
? MostDerivedType
: Ctx.getRecordType(getAsBaseClass(Entries.back()));
}
/// Update this designator to refer to the first element within this array.
void addArrayUnchecked(const ConstantArrayType *CAT) {
PathEntry Entry;
@ -1706,6 +1733,54 @@ static bool IsGlobalLValue(APValue::LValueBase B) {
}
}
static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
return LVal.Base.dyn_cast<const ValueDecl*>();
}
static bool IsLiteralLValue(const LValue &Value) {
if (Value.getLValueCallIndex())
return false;
const Expr *E = Value.Base.dyn_cast<const Expr*>();
return E && !isa<MaterializeTemporaryExpr>(E);
}
static bool IsWeakLValue(const LValue &Value) {
const ValueDecl *Decl = GetLValueBaseDecl(Value);
return Decl && Decl->isWeak();
}
static bool isZeroSized(const LValue &Value) {
const ValueDecl *Decl = GetLValueBaseDecl(Value);
if (Decl && isa<VarDecl>(Decl)) {
QualType Ty = Decl->getType();
if (Ty->isArrayType())
return Ty->isIncompleteType() ||
Decl->getASTContext().getTypeSize(Ty) == 0;
}
return false;
}
static bool HasSameBase(const LValue &A, const LValue &B) {
if (!A.getLValueBase())
return !B.getLValueBase();
if (!B.getLValueBase())
return false;
if (A.getLValueBase().getOpaqueValue() !=
B.getLValueBase().getOpaqueValue()) {
const Decl *ADecl = GetLValueBaseDecl(A);
if (!ADecl)
return false;
const Decl *BDecl = GetLValueBaseDecl(B);
if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
return false;
}
return IsGlobalLValue(A.getLValueBase()) ||
(A.getLValueCallIndex() == B.getLValueCallIndex() &&
A.getLValueVersion() == B.getLValueVersion());
}
static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
assert(Base && "no location for a null lvalue");
const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
@ -1917,33 +1992,6 @@ CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
return true;
}
static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
return LVal.Base.dyn_cast<const ValueDecl*>();
}
static bool IsLiteralLValue(const LValue &Value) {
if (Value.getLValueCallIndex())
return false;
const Expr *E = Value.Base.dyn_cast<const Expr*>();
return E && !isa<MaterializeTemporaryExpr>(E);
}
static bool IsWeakLValue(const LValue &Value) {
const ValueDecl *Decl = GetLValueBaseDecl(Value);
return Decl && Decl->isWeak();
}
static bool isZeroSized(const LValue &Value) {
const ValueDecl *Decl = GetLValueBaseDecl(Value);
if (Decl && isa<VarDecl>(Decl)) {
QualType Ty = Decl->getType();
if (Ty->isArrayType())
return Ty->isIncompleteType() ||
Decl->getASTContext().getTypeSize(Ty) == 0;
}
return false;
}
static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
// A null base expression indicates a null pointer. These are always
// evaluatable, and they are false unless the offset is zero.
@ -6117,6 +6165,130 @@ bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
return ZeroInitialization(E);
}
case Builtin::BImemcpy:
case Builtin::BImemmove:
case Builtin::BIwmemcpy:
case Builtin::BIwmemmove:
if (Info.getLangOpts().CPlusPlus11)
Info.CCEDiag(E, diag::note_constexpr_invalid_function)
<< /*isConstexpr*/0 << /*isConstructor*/0
<< (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
else
Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
LLVM_FALLTHROUGH;
case Builtin::BI__builtin_memcpy:
case Builtin::BI__builtin_memmove:
case Builtin::BI__builtin_wmemcpy:
case Builtin::BI__builtin_wmemmove: {
bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
BuiltinOp == Builtin::BIwmemmove ||
BuiltinOp == Builtin::BI__builtin_wmemcpy ||
BuiltinOp == Builtin::BI__builtin_wmemmove;
bool Move = BuiltinOp == Builtin::BImemmove ||
BuiltinOp == Builtin::BIwmemmove ||
BuiltinOp == Builtin::BI__builtin_memmove ||
BuiltinOp == Builtin::BI__builtin_wmemmove;
// The result of mem* is the first argument.
if (!Visit(E->getArg(0)) || Result.Designator.Invalid)
return false;
LValue Dest = Result;
LValue Src;
if (!EvaluatePointer(E->getArg(1), Src, Info) || Src.Designator.Invalid)
return false;
APSInt N;
if (!EvaluateInteger(E->getArg(2), N, Info))
return false;
assert(!N.isSigned() && "memcpy and friends take an unsigned size");
// If the size is zero, we treat this as always being a valid no-op.
// (Even if one of the src and dest pointers is null.)
if (!N)
return true;
// We require that Src and Dest are both pointers to arrays of
// trivially-copyable type. (For the wide version, the designator will be
// invalid if the designated object is not a wchar_t.)
QualType T = Dest.Designator.getType(Info.Ctx);
QualType SrcT = Src.Designator.getType(Info.Ctx);
if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
return false;
}
if (!T.isTriviallyCopyableType(Info.Ctx)) {
Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
return false;
}
// Figure out how many T's we're copying.
uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
if (!WChar) {
uint64_t Remainder;
llvm::APInt OrigN = N;
llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
if (Remainder) {
Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
<< Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
<< (unsigned)TSize;
return false;
}
}
// Check that the copying will remain within the arrays, just so that we
// can give a more meaningful diagnostic. This implicitly also checks that
// N fits into 64 bits.
uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
<< Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
<< N.toString(10, /*Signed*/false);
return false;
}
uint64_t NElems = N.getZExtValue();
uint64_t NBytes = NElems * TSize;
// Check for overlap.
int Direction = 1;
if (HasSameBase(Src, Dest)) {
uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
// Dest is inside the source region.
if (!Move) {
Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
return false;
}
// For memmove and friends, copy backwards.
if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
!HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
return false;
Direction = -1;
} else if (!Move && SrcOffset >= DestOffset &&
SrcOffset - DestOffset < NBytes) {
// Src is inside the destination region for memcpy: invalid.
Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
return false;
}
}
while (true) {
APValue Val;
if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
!handleAssignment(Info, E, Dest, T, Val))
return false;
// Do not iterate past the last element; if we're copying backwards, that
// might take us off the start of the array.
if (--NElems == 0)
return true;
if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
!HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
return false;
}
}
default:
return visitNonBuiltinCallExpr(E);
}
@ -8357,27 +8529,6 @@ bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
}
}
static bool HasSameBase(const LValue &A, const LValue &B) {
if (!A.getLValueBase())
return !B.getLValueBase();
if (!B.getLValueBase())
return false;
if (A.getLValueBase().getOpaqueValue() !=
B.getLValueBase().getOpaqueValue()) {
const Decl *ADecl = GetLValueBaseDecl(A);
if (!ADecl)
return false;
const Decl *BDecl = GetLValueBaseDecl(B);
if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
return false;
}
return IsGlobalLValue(A.getLValueBase()) ||
(A.getLValueCallIndex() == B.getLValueCallIndex() &&
A.getLValueVersion() == B.getLValueVersion());
}
/// Determine whether this is a pointer past the end of the complete
/// object referred to by the lvalue.
static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,

View File

@ -1,5 +1,10 @@
// RUN: %clang_cc1 -triple i386-pc-linux-gnu -emit-llvm < %s| FileCheck %s
typedef __WCHAR_TYPE__ wchar_t;
typedef __SIZE_TYPE__ size_t;
void *memcpy(void *, void const *, size_t);
// CHECK: @test1
// CHECK: call void @llvm.memset.p0i8.i32
// CHECK: call void @llvm.memset.p0i8.i32
@ -83,3 +88,26 @@ void test9() {
// CHECK: call void @llvm.memcpy{{.*}} align 16 {{.*}} align 16 {{.*}} 16, i1 false)
__builtin_memcpy(x, y, sizeof(y));
}
wchar_t dest;
wchar_t src;
// CHECK-LABEL: @test10
// FIXME: Consider lowering these to llvm.memcpy / llvm.memmove.
void test10() {
// CHECK: call i32* @wmemcpy(i32* @dest, i32* @src, i32 4)
__builtin_wmemcpy(&dest, &src, 4);
// CHECK: call i32* @wmemmove(i32* @dest, i32* @src, i32 4)
__builtin_wmemmove(&dest, &src, 4);
}
// CHECK-LABEL: @test11
void test11() {
typedef struct { int a; } b;
int d;
b e;
// CHECK: call void @llvm.memcpy{{.*}}(
memcpy(&d, (char *)&e.a, sizeof(e));
}

View File

@ -1,6 +1,6 @@
// RUN: %clang_cc1 %s -std=c++1z -fsyntax-only -verify -pedantic
// RUN: %clang_cc1 %s -std=c++1z -fsyntax-only -verify -pedantic -fno-signed-char
// RUN: %clang_cc1 %s -std=c++1z -fsyntax-only -verify -pedantic -fno-wchar -Dwchar_t=__WCHAR_TYPE__
// RUN: %clang_cc1 %s -triple x86_64-linux-gnu -std=c++1z -fsyntax-only -verify -pedantic
// RUN: %clang_cc1 %s -triple x86_64-linux-gnu -std=c++1z -fsyntax-only -verify -pedantic -fno-signed-char
// RUN: %clang_cc1 %s -triple x86_64-linux-gnu -std=c++1z -fsyntax-only -verify -pedantic -fno-wchar -Dwchar_t=__WCHAR_TYPE__
# 6 "/usr/include/string.h" 1 3 4
extern "C" {
@ -14,10 +14,13 @@ extern "C" {
extern char *strchr(const char *s, int c);
extern void *memchr(const void *s, int c, size_t n);
}
# 19 "SemaCXX/constexpr-string.cpp" 2
# 21 "/usr/include/wchar.h" 1 3 4
extern void *memcpy(void *d, const void *s, size_t n);
extern void *memmove(void *d, const void *s, size_t n);
}
# 22 "SemaCXX/constexpr-string.cpp" 2
# 24 "/usr/include/wchar.h" 1 3 4
extern "C" {
extern size_t wcslen(const wchar_t *p);
@ -27,9 +30,12 @@ extern "C" {
extern wchar_t *wcschr(const wchar_t *s, wchar_t c);
extern wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);
extern wchar_t *wmemcpy(wchar_t *d, const wchar_t *s, size_t n);
extern wchar_t *wmemmove(wchar_t *d, const wchar_t *s, size_t n);
}
# 33 "SemaCXX/constexpr-string.cpp" 2
# 39 "SemaCXX/constexpr-string.cpp" 2
namespace Strlen {
constexpr int n = __builtin_strlen("hello"); // ok
static_assert(n == 5);
@ -235,3 +241,133 @@ namespace WcschrEtc {
constexpr bool a = !wcschr(L"hello", L'h'); // expected-error {{constant expression}} expected-note {{non-constexpr function 'wcschr' cannot be used in a constant expression}}
constexpr bool b = !wmemchr(L"hello", L'h', 3); // expected-error {{constant expression}} expected-note {{non-constexpr function 'wmemchr' cannot be used in a constant expression}}
}
namespace MemcpyEtc {
template<typename T>
constexpr T result(T (&arr)[4]) {
return arr[0] * 1000 + arr[1] * 100 + arr[2] * 10 + arr[3];
}
constexpr int test_memcpy(int a, int b, int n) {
int arr[4] = {1, 2, 3, 4};
__builtin_memcpy(arr + a, arr + b, n);
// expected-note@-1 2{{overlapping memory regions}}
// expected-note@-2 {{size to copy (1) is not a multiple of size of element type 'int'}}
// expected-note@-3 {{source is not a contiguous array of at least 2 elements of type 'int'}}
// expected-note@-4 {{destination is not a contiguous array of at least 3 elements of type 'int'}}
return result(arr);
}
constexpr int test_memmove(int a, int b, int n) {
int arr[4] = {1, 2, 3, 4};
__builtin_memmove(arr + a, arr + b, n);
// expected-note@-1 {{size to copy (1) is not a multiple of size of element type 'int'}}
// expected-note@-2 {{source is not a contiguous array of at least 2 elements of type 'int'}}
// expected-note@-3 {{destination is not a contiguous array of at least 3 elements of type 'int'}}
return result(arr);
}
constexpr int test_wmemcpy(int a, int b, int n) {
wchar_t arr[4] = {1, 2, 3, 4};
__builtin_wmemcpy(arr + a, arr + b, n);
// expected-note@-1 2{{overlapping memory regions}}
// expected-note-re@-2 {{source is not a contiguous array of at least 2 elements of type '{{wchar_t|int}}'}}
// expected-note-re@-3 {{destination is not a contiguous array of at least 3 elements of type '{{wchar_t|int}}'}}
return result(arr);
}
constexpr int test_wmemmove(int a, int b, int n) {
wchar_t arr[4] = {1, 2, 3, 4};
__builtin_wmemmove(arr + a, arr + b, n);
// expected-note-re@-1 {{source is not a contiguous array of at least 2 elements of type '{{wchar_t|int}}'}}
// expected-note-re@-2 {{destination is not a contiguous array of at least 3 elements of type '{{wchar_t|int}}'}}
return result(arr);
}
static_assert(test_memcpy(1, 2, 4) == 1334);
static_assert(test_memcpy(2, 1, 4) == 1224);
static_assert(test_memcpy(0, 1, 8) == 2334); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memcpy(1, 0, 8) == 1124); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memcpy(1, 2, 1) == 1334); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memcpy(0, 3, 4) == 4234);
static_assert(test_memcpy(0, 3, 8) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memcpy(2, 0, 12) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memmove(1, 2, 4) == 1334);
static_assert(test_memmove(2, 1, 4) == 1224);
static_assert(test_memmove(0, 1, 8) == 2334);
static_assert(test_memmove(1, 0, 8) == 1124);
static_assert(test_memmove(1, 2, 1) == 1334); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memmove(0, 3, 4) == 4234);
static_assert(test_memmove(0, 3, 8) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_memmove(2, 0, 12) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemcpy(1, 2, 1) == 1334);
static_assert(test_wmemcpy(2, 1, 1) == 1224);
static_assert(test_wmemcpy(0, 1, 2) == 2334); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemcpy(1, 0, 2) == 1124); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemcpy(1, 2, 1) == 1334);
static_assert(test_wmemcpy(0, 3, 1) == 4234);
static_assert(test_wmemcpy(0, 3, 2) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemcpy(2, 0, 3) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemmove(1, 2, 1) == 1334);
static_assert(test_wmemmove(2, 1, 1) == 1224);
static_assert(test_wmemmove(0, 1, 2) == 2334);
static_assert(test_wmemmove(1, 0, 2) == 1124);
static_assert(test_wmemmove(1, 2, 1) == 1334);
static_assert(test_wmemmove(0, 3, 1) == 4234);
static_assert(test_wmemmove(0, 3, 2) == 4234); // expected-error {{constant}} expected-note {{in call}}
static_assert(test_wmemmove(2, 0, 3) == 4234); // expected-error {{constant}} expected-note {{in call}}
// Copying is permitted for any trivially-copyable type.
struct Trivial { char k; short s; constexpr bool ok() { return k == 3 && s == 4; } };
constexpr bool test_trivial() {
Trivial arr[3] = {{1, 2}, {3, 4}, {5, 6}};
__builtin_memcpy(arr, arr+1, sizeof(Trivial));
__builtin_memmove(arr+1, arr, 2 * sizeof(Trivial));
return arr[0].ok() && arr[1].ok() && arr[2].ok();
}
static_assert(test_trivial());
// But not for a non-trivially-copyable type.
struct NonTrivial {
constexpr NonTrivial() : n(0) {}
constexpr NonTrivial(const NonTrivial &) : n(1) {}
int n;
};
constexpr bool test_nontrivial_memcpy() { // expected-error {{never produces a constant}}
NonTrivial arr[3] = {};
__builtin_memcpy(arr, arr + 1, sizeof(NonTrivial)); // expected-note 2{{non-trivially-copyable}}
return true;
}
static_assert(test_nontrivial_memcpy()); // expected-error {{constant}} expected-note {{in call}}
constexpr bool test_nontrivial_memmove() { // expected-error {{never produces a constant}}
NonTrivial arr[3] = {};
__builtin_memcpy(arr, arr + 1, sizeof(NonTrivial)); // expected-note 2{{non-trivially-copyable}}
return true;
}
static_assert(test_nontrivial_memmove()); // expected-error {{constant}} expected-note {{in call}}
// Type puns via constant evaluated memcpy are not supported yet.
constexpr float type_pun(const unsigned &n) {
float f = 0.0f;
__builtin_memcpy(&f, &n, 4); // expected-note {{cannot constant evaluate 'memcpy' from object of type 'const unsigned int' to object of type 'float'}}
return f;
}
static_assert(type_pun(0x3f800000) == 1.0f); // expected-error {{constant}} expected-note {{in call}}
// Make sure we're not confused by derived-to-base conversions.
struct Base { int a; };
struct Derived : Base { int b; };
constexpr int test_derived_to_base(int n) {
Derived arr[2] = {1, 2, 3, 4};
Base *p = &arr[0];
Base *q = &arr[1];
__builtin_memcpy(p, q, sizeof(Base) * n); // expected-note {{source is not a contiguous array of at least 2 elements of type 'MemcpyEtc::Base'}}
return arr[0].a * 1000 + arr[0].b * 100 + arr[1].a * 10 + arr[1].b;
}
static_assert(test_derived_to_base(0) == 1234);
static_assert(test_derived_to_base(1) == 3234);
// FIXME: We could consider making this work by stripping elements off both
// designators until we have a long enough matching size, if both designators
// point to the start of their respective final elements.
static_assert(test_derived_to_base(2) == 3434); // expected-error {{constant}} expected-note {{in call}}
}