forked from OSchip/llvm-project
[mlir][sparse] sampled matrix multiplication fusion test
This integration tests runs a fused and non-fused version of sampled matrix multiplication. Both should eventually have the same performance! NOTE: relies on pending tensor.init fix! Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D110444
This commit is contained in:
parent
36dc5c048a
commit
06e2a0684e
|
@ -0,0 +1,168 @@
|
|||
// RUN: mlir-opt %s \
|
||||
// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
|
||||
// RUN: --sparsification --sparse-tensor-conversion \
|
||||
// RUN: --linalg-bufferize --convert-linalg-to-loops \
|
||||
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
||||
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
||||
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
|
||||
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \
|
||||
// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
|
||||
// RUN: mlir-cpu-runner \
|
||||
// RUN: -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
//
|
||||
// Do the same run, but now with SIMDization as well.
|
||||
// This should not change the outcome.
|
||||
//
|
||||
// RUN: mlir-opt %s \
|
||||
// RUN: --linalg-generalize-named-ops --linalg-fuse-elementwise-ops \
|
||||
// RUN: --sparsification="vectorization-strategy=2 vl=8" --sparse-tensor-conversion \
|
||||
// RUN: --linalg-bufferize --convert-linalg-to-loops \
|
||||
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
||||
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
||||
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
|
||||
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-math-to-llvm \
|
||||
// RUN: --convert-std-to-llvm --reconcile-unrealized-casts | \
|
||||
// RUN: mlir-cpu-runner \
|
||||
// RUN: -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
#SM = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>
|
||||
|
||||
#trait_sampled_dense_dense = {
|
||||
indexing_maps = [
|
||||
affine_map<(i,j,k) -> (i,j)>, // S
|
||||
affine_map<(i,j,k) -> (i,k)>, // A
|
||||
affine_map<(i,j,k) -> (k,j)>, // B
|
||||
affine_map<(i,j,k) -> (i,j)> // X (out)
|
||||
],
|
||||
iterator_types = ["parallel", "parallel", "reduction"],
|
||||
doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)"
|
||||
}
|
||||
|
||||
#trait_matmul = {
|
||||
indexing_maps = [
|
||||
affine_map<(d0, d1, d2) -> (d1, d0)>,
|
||||
affine_map<(d0, d1, d2) -> (d0, d2)>,
|
||||
affine_map<(d0, d1, d2) -> (d1, d2)>
|
||||
],
|
||||
iterator_types = ["reduction", "parallel", "parallel"]
|
||||
}
|
||||
|
||||
#trait_scale = {
|
||||
indexing_maps = [
|
||||
affine_map<(d0, d1) -> (d0, d1)>,
|
||||
affine_map<(d0, d1) -> (d0, d1)>,
|
||||
affine_map<(d0, d1) -> (d0, d1)>
|
||||
],
|
||||
iterator_types = ["parallel", "parallel"]
|
||||
}
|
||||
|
||||
//
|
||||
// Integration test for sampled dense dense matmul fusion.
|
||||
//
|
||||
module {
|
||||
//
|
||||
// A kernel that computes a direct sampled matrix matrix multiplication.
|
||||
//
|
||||
func @sampled_dd(%args: tensor<8x8xf64, #SM>,
|
||||
%arga: tensor<8x8xf64>,
|
||||
%argb: tensor<8x8xf64>) -> tensor<8x8xf64> {
|
||||
%d = constant 0.0 : f64
|
||||
|
||||
%0 = linalg.init_tensor [8, 8] : tensor<8x8xf64>
|
||||
%1 = linalg.fill(%d, %0) : f64, tensor<8x8xf64> -> tensor<8x8xf64>
|
||||
%2 = linalg.generic #trait_sampled_dense_dense
|
||||
ins(%args, %arga, %argb: tensor<8x8xf64, #SM>,
|
||||
tensor<8x8xf64>, tensor<8x8xf64>)
|
||||
outs(%1: tensor<8x8xf64>) {
|
||||
^bb(%s: f64, %a: f64, %b: f64, %x: f64):
|
||||
%p = mulf %a, %b : f64
|
||||
%q = mulf %s, %p : f64
|
||||
%r = addf %x, %q : f64
|
||||
linalg.yield %r : f64
|
||||
} -> tensor<8x8xf64>
|
||||
return %2 : tensor<8x8xf64>
|
||||
}
|
||||
|
||||
//
|
||||
// A kernel that computes an unfused sampled matrix matrix multiplication.
|
||||
//
|
||||
func @sampled_dd_unfused(%args: tensor<8x8xf64, #SM>,
|
||||
%arga: tensor<8x8xf64>,
|
||||
%argb: tensor<8x8xf64>) -> tensor<8x8xf64> {
|
||||
%d = constant 0.0 : f64
|
||||
|
||||
%0 = linalg.init_tensor [8, 8] : tensor<8x8xf64>
|
||||
%1 = linalg.fill(%d, %0) : f64, tensor<8x8xf64> -> tensor<8x8xf64>
|
||||
%2 = linalg.generic #trait_matmul
|
||||
ins(%arga, %argb : tensor<8x8xf64>, tensor<8x8xf64>)
|
||||
outs(%1 : tensor<8x8xf64>) {
|
||||
^bb0(%a: f64, %b: f64, %x: f64):
|
||||
%p = mulf %a, %b : f64
|
||||
%q = addf %x, %p : f64
|
||||
linalg.yield %q : f64
|
||||
} -> tensor<8x8xf64>
|
||||
|
||||
%3 = linalg.init_tensor [8, 8] : tensor<8x8xf64>
|
||||
%4 = linalg.fill(%d, %3) : f64, tensor<8x8xf64> -> tensor<8x8xf64>
|
||||
%5 = linalg.generic #trait_scale
|
||||
ins(%2, %args : tensor<8x8xf64>, tensor<8x8xf64, #SM>)
|
||||
outs(%4 : tensor<8x8xf64>) {
|
||||
^bb0(%t: f64, %s: f64, %x: f64):
|
||||
%r = mulf %t, %s : f64
|
||||
linalg.yield %r : f64
|
||||
} -> tensor<8x8xf64>
|
||||
|
||||
return %5 : tensor<8x8xf64>
|
||||
}
|
||||
|
||||
//
|
||||
// Main driver.
|
||||
//
|
||||
func @entry() {
|
||||
%d0 = constant 0.0 : f64
|
||||
%c0 = constant 0 : index
|
||||
|
||||
%t = constant sparse<[[0, 0], [7,7]], [1.0, 2.0]>
|
||||
: tensor<8x8xf64>
|
||||
%s = sparse_tensor.convert %t
|
||||
: tensor<8x8xf64> to tensor<8x8xf64, #SM>
|
||||
|
||||
%a = constant dense<3.0> : tensor<8x8xf64>
|
||||
%b = constant dense<4.0> : tensor<8x8xf64>
|
||||
|
||||
// Call the kernels.
|
||||
%0 = call @sampled_dd(%s, %a, %b)
|
||||
: (tensor<8x8xf64, #SM>,
|
||||
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64>
|
||||
%1 = call @sampled_dd_unfused(%s, %a, %b)
|
||||
: (tensor<8x8xf64, #SM>,
|
||||
tensor<8x8xf64>, tensor<8x8xf64>) -> tensor<8x8xf64>
|
||||
|
||||
// Verify the outputs.
|
||||
//
|
||||
// CHECK: ( ( 96, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 192 ) )
|
||||
//
|
||||
// CHECK: ( ( 96, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ),
|
||||
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 192 ) )
|
||||
//
|
||||
%m0 = memref.buffer_cast %0 : memref<8x8xf64>
|
||||
%m1 = memref.buffer_cast %1 : memref<8x8xf64>
|
||||
%v0 = vector.transfer_read %m0[%c0, %c0], %d0
|
||||
: memref<8x8xf64>, vector<8x8xf64>
|
||||
%v1 = vector.transfer_read %m1[%c0, %c0], %d0
|
||||
: memref<8x8xf64>, vector<8x8xf64>
|
||||
vector.print %v0 : vector<8x8xf64>
|
||||
vector.print %v1 : vector<8x8xf64>
|
||||
|
||||
return
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue