Fix DOS-style newlines.

A previous patch r210330 (and possibly another) introduced DOS-style newlines
into a UNIX newline formatted file. 

Patch by Mark Heffernan (http://reviews.llvm.org/D4046)

llvm-svn: 210369
This commit is contained in:
Eli Bendersky 2014-06-06 20:31:48 +00:00
parent c94391d3bf
commit 06a4042c8d
6 changed files with 448 additions and 448 deletions

View File

@ -1757,53 +1757,53 @@ def MSVtorDisp : InheritableAttr {
let Documentation = [Undocumented];
}
def Unaligned : IgnoredAttr {
let Spellings = [Keyword<"__unaligned">];
}
def LoopHint : Attr {
/// vectorize: vectorizes loop operations if 'value != 0'.
/// vectorize_width: vectorize loop operations with width 'value'.
/// interleave: interleave multiple loop iterations if 'value != 0'.
/// interleave_count: interleaves 'value' loop interations.
/// FIXME: Add Pragma spelling to tablegen and
/// use it here.
let Spellings = [Keyword<"loop">];
/// State of the loop optimization specified by the spelling.
let Args = [EnumArgument<"Option", "OptionType",
["vectorize", "vectorize_width", "interleave", "interleave_count"],
["Vectorize", "VectorizeWidth", "Interleave", "InterleaveCount"]>,
DefaultIntArgument<"Value", 1>];
let AdditionalMembers = [{
static StringRef getOptionName(int Option) {
switch(Option) {
case Vectorize: return "vectorize";
case VectorizeWidth: return "vectorize_width";
case Interleave: return "interleave";
case InterleaveCount: return "interleave_count";
}
llvm_unreachable("Unhandled LoopHint option.");
}
static StringRef getValueName(int Value) {
if (Value)
return "enable";
return "disable";
}
// FIXME: Modify pretty printer to print this pragma.
void print(raw_ostream &OS, const PrintingPolicy &Policy) const {
OS << "#pragma clang loop " << getOptionName(option) << "(";
if (option == VectorizeWidth || option == InterleaveCount)
OS << value;
else
OS << getValueName(value);
OS << ")\n";
}
}];
let Documentation = [Undocumented];
}
def Unaligned : IgnoredAttr {
let Spellings = [Keyword<"__unaligned">];
}
def LoopHint : Attr {
/// vectorize: vectorizes loop operations if 'value != 0'.
/// vectorize_width: vectorize loop operations with width 'value'.
/// interleave: interleave multiple loop iterations if 'value != 0'.
/// interleave_count: interleaves 'value' loop interations.
/// FIXME: Add Pragma spelling to tablegen and
/// use it here.
let Spellings = [Keyword<"loop">];
/// State of the loop optimization specified by the spelling.
let Args = [EnumArgument<"Option", "OptionType",
["vectorize", "vectorize_width", "interleave", "interleave_count"],
["Vectorize", "VectorizeWidth", "Interleave", "InterleaveCount"]>,
DefaultIntArgument<"Value", 1>];
let AdditionalMembers = [{
static StringRef getOptionName(int Option) {
switch(Option) {
case Vectorize: return "vectorize";
case VectorizeWidth: return "vectorize_width";
case Interleave: return "interleave";
case InterleaveCount: return "interleave_count";
}
llvm_unreachable("Unhandled LoopHint option.");
}
static StringRef getValueName(int Value) {
if (Value)
return "enable";
return "disable";
}
// FIXME: Modify pretty printer to print this pragma.
void print(raw_ostream &OS, const PrintingPolicy &Policy) const {
OS << "#pragma clang loop " << getOptionName(option) << "(";
if (option == VectorizeWidth || option == InterleaveCount)
OS << value;
else
OS << getValueName(value);
OS << ")\n";
}
}];
let Documentation = [Undocumented];
}

View File

@ -889,16 +889,16 @@ def err_omp_unexpected_directive : Error<
def err_omp_expected_punc : Error<
"expected ',' or ')' in '%0' clause">;
def err_omp_unexpected_clause : Error<
"unexpected OpenMP clause '%0' in directive '#pragma omp %1'">;
def err_omp_more_one_clause : Error<
"directive '#pragma omp %0' cannot contain more than one '%1' clause">;
// Pragma loop support.
def err_pragma_loop_invalid_option : Error<
"%select{invalid|missing}0 option%select{ %1|}0; expected vectorize, vectorize_width, interleave, or interleave_count">;
} // end of Parse Issue category.
let CategoryName = "Modules Issue" in {
"unexpected OpenMP clause '%0' in directive '#pragma omp %1'">;
def err_omp_more_one_clause : Error<
"directive '#pragma omp %0' cannot contain more than one '%1' clause">;
// Pragma loop support.
def err_pragma_loop_invalid_option : Error<
"%select{invalid|missing}0 option%select{ %1|}0; expected vectorize, vectorize_width, interleave, or interleave_count">;
} // end of Parse Issue category.
let CategoryName = "Modules Issue" in {
def err_module_expected_ident : Error<
"expected a module name after module import">;
def err_module_expected_semi : Error<

View File

@ -539,21 +539,21 @@ def err_pragma_push_visibility_mismatch : Error<
def note_surrounding_namespace_ends_here : Note<
"surrounding namespace with visibility attribute ends here">;
def err_pragma_pop_visibility_mismatch : Error<
"#pragma visibility pop with no matching #pragma visibility push">;
def note_surrounding_namespace_starts_here : Note<
"surrounding namespace with visibility attribute starts here">;
def err_pragma_loop_invalid_value : Error<
"%select{invalid|missing}0 value%select{ %1|}0; expected a positive integer value">;
def err_pragma_loop_invalid_keyword : Error<
"%select{invalid|missing}0 keyword%select{ %1|}0; expected 'enable' or 'disable'">;
def err_pragma_loop_compatibility : Error<
"%select{incompatible|duplicate}0 directives '%1(%2)' and '%3(%4)'">;
def err_pragma_loop_precedes_nonloop : Error<
"expected a for, while, or do-while loop to follow the '#pragma clang loop' "
"directive">;
/// Objective-C parser diagnostics
def err_duplicate_class_def : Error<
"#pragma visibility pop with no matching #pragma visibility push">;
def note_surrounding_namespace_starts_here : Note<
"surrounding namespace with visibility attribute starts here">;
def err_pragma_loop_invalid_value : Error<
"%select{invalid|missing}0 value%select{ %1|}0; expected a positive integer value">;
def err_pragma_loop_invalid_keyword : Error<
"%select{invalid|missing}0 keyword%select{ %1|}0; expected 'enable' or 'disable'">;
def err_pragma_loop_compatibility : Error<
"%select{incompatible|duplicate}0 directives '%1(%2)' and '%3(%4)'">;
def err_pragma_loop_precedes_nonloop : Error<
"expected a for, while, or do-while loop to follow the '#pragma clang loop' "
"directive">;
/// Objective-C parser diagnostics
def err_duplicate_class_def : Error<
"duplicate interface definition for class %0">;
def err_undef_superclass : Error<
"cannot find interface declaration for %0, superclass of %1">;

View File

@ -12,13 +12,13 @@
//===----------------------------------------------------------------------===//
#include "RAIIObjectsForParser.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/Scope.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
namespace {
@ -139,18 +139,18 @@ struct PragmaOptimizeHandler : public PragmaHandler {
void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
Token &FirstToken) override;
private:
Sema &Actions;
};
struct PragmaLoopHintHandler : public PragmaHandler {
PragmaLoopHintHandler() : PragmaHandler("loop") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
Token &FirstToken) override;
};
} // end namespace
void Parser::initializePragmaHandlers() {
Sema &Actions;
};
struct PragmaLoopHintHandler : public PragmaHandler {
PragmaLoopHintHandler() : PragmaHandler("loop") {}
void HandlePragma(Preprocessor &PP, PragmaIntroducerKind Introducer,
Token &FirstToken) override;
};
} // end namespace
void Parser::initializePragmaHandlers() {
AlignHandler.reset(new PragmaAlignHandler());
PP.AddPragmaHandler(AlignHandler.get());
@ -212,15 +212,15 @@ void Parser::initializePragmaHandlers() {
MSSection.reset(new PragmaMSPragma("section"));
PP.AddPragmaHandler(MSSection.get());
}
OptimizeHandler.reset(new PragmaOptimizeHandler(Actions));
PP.AddPragmaHandler("clang", OptimizeHandler.get());
LoopHintHandler.reset(new PragmaLoopHintHandler());
PP.AddPragmaHandler("clang", LoopHintHandler.get());
}
void Parser::resetPragmaHandlers() {
OptimizeHandler.reset(new PragmaOptimizeHandler(Actions));
PP.AddPragmaHandler("clang", OptimizeHandler.get());
LoopHintHandler.reset(new PragmaLoopHintHandler());
PP.AddPragmaHandler("clang", LoopHintHandler.get());
}
void Parser::resetPragmaHandlers() {
// Remove the pragma handlers we installed.
PP.RemovePragmaHandler(AlignHandler.get());
AlignHandler.reset();
@ -272,15 +272,15 @@ void Parser::resetPragmaHandlers() {
PP.RemovePragmaHandler("STDC", FPContractHandler.get());
FPContractHandler.reset();
PP.RemovePragmaHandler("clang", OptimizeHandler.get());
OptimizeHandler.reset();
PP.RemovePragmaHandler("clang", LoopHintHandler.get());
LoopHintHandler.reset();
}
/// \brief Handle the annotation token produced for #pragma unused(...)
PP.RemovePragmaHandler("clang", OptimizeHandler.get());
OptimizeHandler.reset();
PP.RemovePragmaHandler("clang", LoopHintHandler.get());
LoopHintHandler.reset();
}
/// \brief Handle the annotation token produced for #pragma unused(...)
///
/// Each annot_pragma_unused is followed by the argument token so e.g.
/// "#pragma unused(x,y)" becomes:
@ -596,46 +596,46 @@ unsigned Parser::HandlePragmaMSSegment(llvm::StringRef PragmaName,
unsigned Parser::HandlePragmaMSInitSeg(llvm::StringRef PragmaName,
SourceLocation PragmaLocation) {
return PP.getDiagnostics().getCustomDiagID(
DiagnosticsEngine::Error, "'#pragma %0' not implemented.");
}
struct PragmaLoopHintInfo {
Token Loop;
Token Value;
Token Option;
};
LoopHint Parser::HandlePragmaLoopHint() {
assert(Tok.is(tok::annot_pragma_loop_hint));
PragmaLoopHintInfo *Info =
static_cast<PragmaLoopHintInfo *>(Tok.getAnnotationValue());
LoopHint Hint;
Hint.LoopLoc =
IdentifierLoc::create(Actions.Context, Info->Loop.getLocation(),
Info->Loop.getIdentifierInfo());
Hint.OptionLoc =
IdentifierLoc::create(Actions.Context, Info->Option.getLocation(),
Info->Option.getIdentifierInfo());
Hint.ValueLoc =
IdentifierLoc::create(Actions.Context, Info->Value.getLocation(),
Info->Value.getIdentifierInfo());
Hint.Range =
SourceRange(Info->Option.getLocation(), Info->Value.getLocation());
// FIXME: We should support template parameters for the loop hint value.
// See bug report #19610
if (Info->Value.is(tok::numeric_constant))
Hint.ValueExpr = Actions.ActOnNumericConstant(Info->Value).get();
else
Hint.ValueExpr = nullptr;
return Hint;
}
// #pragma GCC visibility comes in two variants:
// 'push' '(' [visibility] ')'
// 'pop'
DiagnosticsEngine::Error, "'#pragma %0' not implemented.");
}
struct PragmaLoopHintInfo {
Token Loop;
Token Value;
Token Option;
};
LoopHint Parser::HandlePragmaLoopHint() {
assert(Tok.is(tok::annot_pragma_loop_hint));
PragmaLoopHintInfo *Info =
static_cast<PragmaLoopHintInfo *>(Tok.getAnnotationValue());
LoopHint Hint;
Hint.LoopLoc =
IdentifierLoc::create(Actions.Context, Info->Loop.getLocation(),
Info->Loop.getIdentifierInfo());
Hint.OptionLoc =
IdentifierLoc::create(Actions.Context, Info->Option.getLocation(),
Info->Option.getIdentifierInfo());
Hint.ValueLoc =
IdentifierLoc::create(Actions.Context, Info->Value.getLocation(),
Info->Value.getIdentifierInfo());
Hint.Range =
SourceRange(Info->Option.getLocation(), Info->Value.getLocation());
// FIXME: We should support template parameters for the loop hint value.
// See bug report #19610
if (Info->Value.is(tok::numeric_constant))
Hint.ValueExpr = Actions.ActOnNumericConstant(Info->Value).get();
else
Hint.ValueExpr = nullptr;
return Hint;
}
// #pragma GCC visibility comes in two variants:
// 'push' '(' [visibility] ')'
// 'pop'
void PragmaGCCVisibilityHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducerKind Introducer,
Token &VisTok) {
@ -1628,113 +1628,113 @@ void PragmaOptimizeHandler::HandlePragma(Preprocessor &PP,
<< PP.getSpelling(Tok);
return;
}
Actions.ActOnPragmaOptimize(IsOn, FirstToken.getLocation());
}
/// \brief Handle the \#pragma clang loop directive.
/// #pragma clang 'loop' loop-hints
///
/// loop-hints:
/// loop-hint loop-hints[opt]
///
/// loop-hint:
/// 'vectorize' '(' loop-hint-keyword ')'
/// 'interleave' '(' loop-hint-keyword ')'
/// 'vectorize_width' '(' loop-hint-value ')'
/// 'interleave_count' '(' loop-hint-value ')'
///
/// loop-hint-keyword:
/// 'enable'
/// 'disable'
///
/// loop-hint-value:
/// constant-expression
///
/// Specifying vectorize(enable) or vectorize_width(_value_) instructs llvm to
/// try vectorizing the instructions of the loop it precedes. Specifying
/// interleave(enable) or interleave_count(_value_) instructs llvm to try
/// interleaving multiple iterations of the loop it precedes. The width of the
/// vector instructions is specified by vectorize_width() and the number of
/// interleaved loop iterations is specified by interleave_count(). Specifying a
/// value of 1 effectively disables vectorization/interleaving, even if it is
/// possible and profitable, and 0 is invalid. The loop vectorizer currently
/// only works on inner loops.
///
void PragmaLoopHintHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducerKind Introducer,
Token &Tok) {
Token Loop = Tok;
SmallVector<Token, 1> TokenList;
// Lex the optimization option and verify it is an identifier.
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/true << "";
return;
}
while (Tok.is(tok::identifier)) {
Token Option = Tok;
IdentifierInfo *OptionInfo = Tok.getIdentifierInfo();
if (!OptionInfo->isStr("vectorize") && !OptionInfo->isStr("interleave") &&
!OptionInfo->isStr("vectorize_width") &&
!OptionInfo->isStr("interleave_count")) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/false << OptionInfo;
return;
}
// Read '('
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
return;
}
// FIXME: All tokens between '(' and ')' should be stored and parsed as a
// constant expression.
PP.Lex(Tok);
Token Value;
if (Tok.is(tok::identifier) || Tok.is(tok::numeric_constant))
Value = Tok;
// Read ')'
PP.Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return;
}
// Get next optimization option.
PP.Lex(Tok);
auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
Info->Loop = Loop;
Info->Option = Option;
Info->Value = Value;
// Generate the vectorization hint token.
Token LoopHintTok;
LoopHintTok.startToken();
LoopHintTok.setKind(tok::annot_pragma_loop_hint);
LoopHintTok.setLocation(Loop.getLocation());
LoopHintTok.setAnnotationValue(static_cast<void *>(Info));
TokenList.push_back(LoopHintTok);
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang loop";
return;
}
Token *TokenArray = new Token[TokenList.size()];
std::copy(TokenList.begin(), TokenList.end(), TokenArray);
PP.EnterTokenStream(TokenArray, TokenList.size(),
/*DisableMacroExpansion=*/false,
/*OwnsTokens=*/true);
}
Actions.ActOnPragmaOptimize(IsOn, FirstToken.getLocation());
}
/// \brief Handle the \#pragma clang loop directive.
/// #pragma clang 'loop' loop-hints
///
/// loop-hints:
/// loop-hint loop-hints[opt]
///
/// loop-hint:
/// 'vectorize' '(' loop-hint-keyword ')'
/// 'interleave' '(' loop-hint-keyword ')'
/// 'vectorize_width' '(' loop-hint-value ')'
/// 'interleave_count' '(' loop-hint-value ')'
///
/// loop-hint-keyword:
/// 'enable'
/// 'disable'
///
/// loop-hint-value:
/// constant-expression
///
/// Specifying vectorize(enable) or vectorize_width(_value_) instructs llvm to
/// try vectorizing the instructions of the loop it precedes. Specifying
/// interleave(enable) or interleave_count(_value_) instructs llvm to try
/// interleaving multiple iterations of the loop it precedes. The width of the
/// vector instructions is specified by vectorize_width() and the number of
/// interleaved loop iterations is specified by interleave_count(). Specifying a
/// value of 1 effectively disables vectorization/interleaving, even if it is
/// possible and profitable, and 0 is invalid. The loop vectorizer currently
/// only works on inner loops.
///
void PragmaLoopHintHandler::HandlePragma(Preprocessor &PP,
PragmaIntroducerKind Introducer,
Token &Tok) {
Token Loop = Tok;
SmallVector<Token, 1> TokenList;
// Lex the optimization option and verify it is an identifier.
PP.Lex(Tok);
if (Tok.isNot(tok::identifier)) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/true << "";
return;
}
while (Tok.is(tok::identifier)) {
Token Option = Tok;
IdentifierInfo *OptionInfo = Tok.getIdentifierInfo();
if (!OptionInfo->isStr("vectorize") && !OptionInfo->isStr("interleave") &&
!OptionInfo->isStr("vectorize_width") &&
!OptionInfo->isStr("interleave_count")) {
PP.Diag(Tok.getLocation(), diag::err_pragma_loop_invalid_option)
<< /*MissingOption=*/false << OptionInfo;
return;
}
// Read '('
PP.Lex(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::l_paren;
return;
}
// FIXME: All tokens between '(' and ')' should be stored and parsed as a
// constant expression.
PP.Lex(Tok);
Token Value;
if (Tok.is(tok::identifier) || Tok.is(tok::numeric_constant))
Value = Tok;
// Read ')'
PP.Lex(Tok);
if (Tok.isNot(tok::r_paren)) {
PP.Diag(Tok.getLocation(), diag::err_expected) << tok::r_paren;
return;
}
// Get next optimization option.
PP.Lex(Tok);
auto *Info = new (PP.getPreprocessorAllocator()) PragmaLoopHintInfo;
Info->Loop = Loop;
Info->Option = Option;
Info->Value = Value;
// Generate the vectorization hint token.
Token LoopHintTok;
LoopHintTok.startToken();
LoopHintTok.setKind(tok::annot_pragma_loop_hint);
LoopHintTok.setLocation(Loop.getLocation());
LoopHintTok.setAnnotationValue(static_cast<void *>(Info));
TokenList.push_back(LoopHintTok);
}
if (Tok.isNot(tok::eod)) {
PP.Diag(Tok.getLocation(), diag::warn_pragma_extra_tokens_at_eol)
<< "clang loop";
return;
}
Token *TokenArray = new Token[TokenList.size()];
std::copy(TokenList.begin(), TokenList.end(), TokenArray);
PP.EnterTokenStream(TokenArray, TokenList.size(),
/*DisableMacroExpansion=*/false,
/*OwnsTokens=*/true);
}

View File

@ -13,13 +13,13 @@
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/ScopeInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/LoopHint.h"
#include "clang/Sema/ScopeInfo.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace sema;
@ -40,176 +40,176 @@ static Attr *handleFallThroughAttr(Sema &S, Stmt *St, const AttributeList &A,
return nullptr;
}
return ::new (S.Context) FallThroughAttr(A.getRange(), S.Context,
A.getAttributeSpellingListIndex());
}
static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const AttributeList &A,
SourceRange) {
if (St->getStmtClass() != Stmt::DoStmtClass &&
St->getStmtClass() != Stmt::ForStmtClass &&
St->getStmtClass() != Stmt::CXXForRangeStmtClass &&
St->getStmtClass() != Stmt::WhileStmtClass) {
S.Diag(St->getLocStart(), diag::err_pragma_loop_precedes_nonloop);
return nullptr;
}
IdentifierLoc *OptionLoc = A.getArgAsIdent(0);
IdentifierInfo *OptionInfo = OptionLoc->Ident;
IdentifierLoc *ValueLoc = A.getArgAsIdent(1);
IdentifierInfo *ValueInfo = ValueLoc->Ident;
Expr *ValueExpr = A.getArgAsExpr(2);
assert(OptionInfo && "Attribute must have valid option info.");
LoopHintAttr::OptionType Option =
llvm::StringSwitch<LoopHintAttr::OptionType>(OptionInfo->getNameStart())
.Case("vectorize", LoopHintAttr::Vectorize)
.Case("vectorize_width", LoopHintAttr::VectorizeWidth)
.Case("interleave", LoopHintAttr::Interleave)
.Case("interleave_count", LoopHintAttr::InterleaveCount)
.Default(LoopHintAttr::Vectorize);
int ValueInt;
if (Option == LoopHintAttr::Vectorize || Option == LoopHintAttr::Interleave) {
if (!ValueInfo) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_keyword)
<< /*MissingKeyword=*/true << "";
return nullptr;
}
if (ValueInfo->isStr("disable"))
ValueInt = 0;
else if (ValueInfo->isStr("enable"))
ValueInt = 1;
else {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_keyword)
<< /*MissingKeyword=*/false << ValueInfo;
return nullptr;
}
} else if (Option == LoopHintAttr::VectorizeWidth ||
Option == LoopHintAttr::InterleaveCount) {
// FIXME: We should support template parameters for the loop hint value.
// See bug report #19610.
llvm::APSInt ValueAPS;
if (!ValueExpr || !ValueExpr->isIntegerConstantExpr(ValueAPS, S.Context)) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_value)
<< /*MissingValue=*/true << "";
return nullptr;
}
if ((ValueInt = ValueAPS.getSExtValue()) < 1) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_value)
<< /*MissingValue=*/false << ValueInt;
return nullptr;
}
} else
llvm_unreachable("Unknown loop hint option");
return LoopHintAttr::CreateImplicit(S.Context, Option, ValueInt,
A.getRange());
}
static void
CheckForIncompatibleAttributes(Sema &S, SmallVectorImpl<const Attr *> &Attrs) {
int PrevOptionValue[4] = {-1, -1, -1, -1};
int OptionId[4] = {LoopHintAttr::Vectorize, LoopHintAttr::VectorizeWidth,
LoopHintAttr::Interleave, LoopHintAttr::InterleaveCount};
for (const auto *I : Attrs) {
const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(I);
// Skip non loop hint attributes
if (!LH)
continue;
int State, Value;
int Option = LH->getOption();
int ValueInt = LH->getValue();
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::VectorizeWidth:
State = 0;
Value = 1;
break;
case LoopHintAttr::Interleave:
case LoopHintAttr::InterleaveCount:
State = 2;
Value = 3;
break;
}
SourceLocation ValueLoc = LH->getRange().getEnd();
// Compatibility testing is split into two cases.
// 1. if the current loop hint sets state (enable/disable) - check against
// previous state and value.
// 2. if the current loop hint sets a value - check against previous state
// and value.
if (Option == State) {
if (PrevOptionValue[State] != -1) {
// Cannot specify state twice.
int PrevValue = PrevOptionValue[State];
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(PrevValue)
<< LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(Value);
}
if (PrevOptionValue[Value] != -1) {
// Compare state with previous width/count.
int PrevOption = OptionId[Value];
int PrevValueInt = PrevOptionValue[Value];
if ((ValueInt == 0 && PrevValueInt > 1) ||
(ValueInt == 1 && PrevValueInt <= 1))
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false << LoopHintAttr::getOptionName(PrevOption)
<< PrevValueInt << LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(ValueInt);
}
} else {
if (PrevOptionValue[State] != -1) {
// Compare width/count value with previous state.
int PrevOption = OptionId[State];
int PrevValueInt = PrevOptionValue[State];
if ((ValueInt > 1 && PrevValueInt == 0) ||
(ValueInt <= 1 && PrevValueInt == 1))
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false << LoopHintAttr::getOptionName(PrevOption)
<< LoopHintAttr::getValueName(PrevValueInt)
<< LoopHintAttr::getOptionName(Option) << ValueInt;
}
if (PrevOptionValue[Value] != -1) {
// Cannot specify a width/count twice.
int PrevValueInt = PrevOptionValue[Value];
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << LoopHintAttr::getOptionName(Option)
<< PrevValueInt << LoopHintAttr::getOptionName(Option) << ValueInt;
}
}
PrevOptionValue[Option] = ValueInt;
}
}
static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const AttributeList &A,
SourceRange Range) {
switch (A.getKind()) {
A.getAttributeSpellingListIndex());
}
static Attr *handleLoopHintAttr(Sema &S, Stmt *St, const AttributeList &A,
SourceRange) {
if (St->getStmtClass() != Stmt::DoStmtClass &&
St->getStmtClass() != Stmt::ForStmtClass &&
St->getStmtClass() != Stmt::CXXForRangeStmtClass &&
St->getStmtClass() != Stmt::WhileStmtClass) {
S.Diag(St->getLocStart(), diag::err_pragma_loop_precedes_nonloop);
return nullptr;
}
IdentifierLoc *OptionLoc = A.getArgAsIdent(0);
IdentifierInfo *OptionInfo = OptionLoc->Ident;
IdentifierLoc *ValueLoc = A.getArgAsIdent(1);
IdentifierInfo *ValueInfo = ValueLoc->Ident;
Expr *ValueExpr = A.getArgAsExpr(2);
assert(OptionInfo && "Attribute must have valid option info.");
LoopHintAttr::OptionType Option =
llvm::StringSwitch<LoopHintAttr::OptionType>(OptionInfo->getNameStart())
.Case("vectorize", LoopHintAttr::Vectorize)
.Case("vectorize_width", LoopHintAttr::VectorizeWidth)
.Case("interleave", LoopHintAttr::Interleave)
.Case("interleave_count", LoopHintAttr::InterleaveCount)
.Default(LoopHintAttr::Vectorize);
int ValueInt;
if (Option == LoopHintAttr::Vectorize || Option == LoopHintAttr::Interleave) {
if (!ValueInfo) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_keyword)
<< /*MissingKeyword=*/true << "";
return nullptr;
}
if (ValueInfo->isStr("disable"))
ValueInt = 0;
else if (ValueInfo->isStr("enable"))
ValueInt = 1;
else {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_keyword)
<< /*MissingKeyword=*/false << ValueInfo;
return nullptr;
}
} else if (Option == LoopHintAttr::VectorizeWidth ||
Option == LoopHintAttr::InterleaveCount) {
// FIXME: We should support template parameters for the loop hint value.
// See bug report #19610.
llvm::APSInt ValueAPS;
if (!ValueExpr || !ValueExpr->isIntegerConstantExpr(ValueAPS, S.Context)) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_value)
<< /*MissingValue=*/true << "";
return nullptr;
}
if ((ValueInt = ValueAPS.getSExtValue()) < 1) {
S.Diag(ValueLoc->Loc, diag::err_pragma_loop_invalid_value)
<< /*MissingValue=*/false << ValueInt;
return nullptr;
}
} else
llvm_unreachable("Unknown loop hint option");
return LoopHintAttr::CreateImplicit(S.Context, Option, ValueInt,
A.getRange());
}
static void
CheckForIncompatibleAttributes(Sema &S, SmallVectorImpl<const Attr *> &Attrs) {
int PrevOptionValue[4] = {-1, -1, -1, -1};
int OptionId[4] = {LoopHintAttr::Vectorize, LoopHintAttr::VectorizeWidth,
LoopHintAttr::Interleave, LoopHintAttr::InterleaveCount};
for (const auto *I : Attrs) {
const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(I);
// Skip non loop hint attributes
if (!LH)
continue;
int State, Value;
int Option = LH->getOption();
int ValueInt = LH->getValue();
switch (Option) {
case LoopHintAttr::Vectorize:
case LoopHintAttr::VectorizeWidth:
State = 0;
Value = 1;
break;
case LoopHintAttr::Interleave:
case LoopHintAttr::InterleaveCount:
State = 2;
Value = 3;
break;
}
SourceLocation ValueLoc = LH->getRange().getEnd();
// Compatibility testing is split into two cases.
// 1. if the current loop hint sets state (enable/disable) - check against
// previous state and value.
// 2. if the current loop hint sets a value - check against previous state
// and value.
if (Option == State) {
if (PrevOptionValue[State] != -1) {
// Cannot specify state twice.
int PrevValue = PrevOptionValue[State];
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(PrevValue)
<< LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(Value);
}
if (PrevOptionValue[Value] != -1) {
// Compare state with previous width/count.
int PrevOption = OptionId[Value];
int PrevValueInt = PrevOptionValue[Value];
if ((ValueInt == 0 && PrevValueInt > 1) ||
(ValueInt == 1 && PrevValueInt <= 1))
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false << LoopHintAttr::getOptionName(PrevOption)
<< PrevValueInt << LoopHintAttr::getOptionName(Option)
<< LoopHintAttr::getValueName(ValueInt);
}
} else {
if (PrevOptionValue[State] != -1) {
// Compare width/count value with previous state.
int PrevOption = OptionId[State];
int PrevValueInt = PrevOptionValue[State];
if ((ValueInt > 1 && PrevValueInt == 0) ||
(ValueInt <= 1 && PrevValueInt == 1))
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/false << LoopHintAttr::getOptionName(PrevOption)
<< LoopHintAttr::getValueName(PrevValueInt)
<< LoopHintAttr::getOptionName(Option) << ValueInt;
}
if (PrevOptionValue[Value] != -1) {
// Cannot specify a width/count twice.
int PrevValueInt = PrevOptionValue[Value];
S.Diag(ValueLoc, diag::err_pragma_loop_compatibility)
<< /*Duplicate=*/true << LoopHintAttr::getOptionName(Option)
<< PrevValueInt << LoopHintAttr::getOptionName(Option) << ValueInt;
}
}
PrevOptionValue[Option] = ValueInt;
}
}
static Attr *ProcessStmtAttribute(Sema &S, Stmt *St, const AttributeList &A,
SourceRange Range) {
switch (A.getKind()) {
case AttributeList::UnknownAttribute:
S.Diag(A.getLoc(), A.isDeclspecAttribute() ?
diag::warn_unhandled_ms_attribute_ignored :
diag::warn_unknown_attribute_ignored) << A.getName();
return nullptr;
case AttributeList::AT_FallThrough:
return handleFallThroughAttr(S, St, A, Range);
case AttributeList::AT_LoopHint:
return handleLoopHintAttr(S, St, A, Range);
default:
// if we're here, then we parsed a known attribute, but didn't recognize
// it as a statement attribute => it is declaration attribute
return nullptr;
case AttributeList::AT_FallThrough:
return handleFallThroughAttr(S, St, A, Range);
case AttributeList::AT_LoopHint:
return handleLoopHintAttr(S, St, A, Range);
default:
// if we're here, then we parsed a known attribute, but didn't recognize
// it as a statement attribute => it is declaration attribute
S.Diag(A.getRange().getBegin(), diag::err_attribute_invalid_on_stmt)
<< A.getName() << St->getLocStart();
return nullptr;
@ -221,13 +221,13 @@ StmtResult Sema::ProcessStmtAttributes(Stmt *S, AttributeList *AttrList,
SmallVector<const Attr*, 8> Attrs;
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
if (Attr *a = ProcessStmtAttribute(*this, S, *l, Range))
Attrs.push_back(a);
}
CheckForIncompatibleAttributes(*this, Attrs);
if (Attrs.empty())
return S;
Attrs.push_back(a);
}
CheckForIncompatibleAttributes(*this, Attrs);
if (Attrs.empty())
return S;
return ActOnAttributedStmt(Range.getBegin(), Attrs, S);
}

View File

@ -94,9 +94,9 @@ namespace Test7 {
// Shouldn't crash.
namespace Test8 {
struct A {};
struct D { int a; };
struct B : virtual D, A { };
struct C : B, A { void f() {} };
C c;
struct A {};
struct D { int a; };
struct B : virtual D, A { };
struct C : B, A { void f() {} };
C c;
}