forked from OSchip/llvm-project
[clang-tidy] Add loop-convert check to clang-tidy.
Move LoopConvert from clang-modernize to modernize module in clang-tidy. http://reviews.llvm.org/D12076 Patch by Angel Garcia! llvm-svn: 245427
This commit is contained in:
parent
c90b526e38
commit
0497084b69
|
@ -1,6 +1,8 @@
|
|||
set(LLVM_LINK_COMPONENTS support)
|
||||
|
||||
add_clang_library(clangTidyModernizeModule
|
||||
LoopConvertCheck.cpp
|
||||
LoopConvertUtils.cpp
|
||||
ModernizeTidyModule.cpp
|
||||
PassByValueCheck.cpp
|
||||
|
||||
|
|
|
@ -0,0 +1,668 @@
|
|||
//===--- LoopConvertCheck.cpp - clang-tidy---------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "LoopConvertCheck.h"
|
||||
#include "clang/AST/ASTContext.h"
|
||||
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
||||
|
||||
using namespace clang;
|
||||
using namespace clang::ast_matchers;
|
||||
using namespace llvm;
|
||||
|
||||
namespace clang {
|
||||
namespace tidy {
|
||||
namespace modernize {
|
||||
|
||||
const char LoopNameArray[] = "forLoopArray";
|
||||
const char LoopNameIterator[] = "forLoopIterator";
|
||||
const char LoopNamePseudoArray[] = "forLoopPseudoArray";
|
||||
const char ConditionBoundName[] = "conditionBound";
|
||||
const char ConditionVarName[] = "conditionVar";
|
||||
const char IncrementVarName[] = "incrementVar";
|
||||
const char InitVarName[] = "initVar";
|
||||
const char BeginCallName[] = "beginCall";
|
||||
const char EndCallName[] = "endCall";
|
||||
const char ConditionEndVarName[] = "conditionEndVar";
|
||||
const char EndVarName[] = "endVar";
|
||||
const char DerefByValueResultName[] = "derefByValueResult";
|
||||
const char DerefByRefResultName[] = "derefByRefResult";
|
||||
|
||||
// shared matchers
|
||||
static const TypeMatcher AnyType = anything();
|
||||
|
||||
static const StatementMatcher IntegerComparisonMatcher =
|
||||
expr(ignoringParenImpCasts(
|
||||
declRefExpr(to(varDecl(hasType(isInteger())).bind(ConditionVarName)))));
|
||||
|
||||
static const DeclarationMatcher InitToZeroMatcher =
|
||||
varDecl(hasInitializer(ignoringParenImpCasts(integerLiteral(equals(0)))))
|
||||
.bind(InitVarName);
|
||||
|
||||
static const StatementMatcher IncrementVarMatcher =
|
||||
declRefExpr(to(varDecl(hasType(isInteger())).bind(IncrementVarName)));
|
||||
|
||||
/// \brief The matcher for loops over arrays.
|
||||
///
|
||||
/// In this general example, assuming 'j' and 'k' are of integral type:
|
||||
/// \code
|
||||
/// for (int i = 0; j < 3 + 2; ++k) { ... }
|
||||
/// \endcode
|
||||
/// The following string identifiers are bound to these parts of the AST:
|
||||
/// ConditionVarName: 'j' (as a VarDecl)
|
||||
/// ConditionBoundName: '3 + 2' (as an Expr)
|
||||
/// InitVarName: 'i' (as a VarDecl)
|
||||
/// IncrementVarName: 'k' (as a VarDecl)
|
||||
/// LoopName: The entire for loop (as a ForStmt)
|
||||
///
|
||||
/// Client code will need to make sure that:
|
||||
/// - The three index variables identified by the matcher are the same
|
||||
/// VarDecl.
|
||||
/// - The index variable is only used as an array index.
|
||||
/// - All arrays indexed by the loop are the same.
|
||||
StatementMatcher makeArrayLoopMatcher() {
|
||||
StatementMatcher ArrayBoundMatcher =
|
||||
expr(hasType(isInteger())).bind(ConditionBoundName);
|
||||
|
||||
return forStmt(
|
||||
hasLoopInit(declStmt(hasSingleDecl(InitToZeroMatcher))),
|
||||
hasCondition(anyOf(
|
||||
binaryOperator(hasOperatorName("<"),
|
||||
hasLHS(IntegerComparisonMatcher),
|
||||
hasRHS(ArrayBoundMatcher)),
|
||||
binaryOperator(hasOperatorName(">"), hasLHS(ArrayBoundMatcher),
|
||||
hasRHS(IntegerComparisonMatcher)))),
|
||||
hasIncrement(unaryOperator(hasOperatorName("++"),
|
||||
hasUnaryOperand(IncrementVarMatcher))))
|
||||
.bind(LoopNameArray);
|
||||
}
|
||||
|
||||
/// \brief The matcher used for iterator-based for loops.
|
||||
///
|
||||
/// This matcher is more flexible than array-based loops. It will match
|
||||
/// catch loops of the following textual forms (regardless of whether the
|
||||
/// iterator type is actually a pointer type or a class type):
|
||||
///
|
||||
/// Assuming f, g, and h are of type containerType::iterator,
|
||||
/// \code
|
||||
/// for (containerType::iterator it = container.begin(),
|
||||
/// e = createIterator(); f != g; ++h) { ... }
|
||||
/// for (containerType::iterator it = container.begin();
|
||||
/// f != anotherContainer.end(); ++h) { ... }
|
||||
/// \endcode
|
||||
/// The following string identifiers are bound to the parts of the AST:
|
||||
/// InitVarName: 'it' (as a VarDecl)
|
||||
/// ConditionVarName: 'f' (as a VarDecl)
|
||||
/// LoopName: The entire for loop (as a ForStmt)
|
||||
/// In the first example only:
|
||||
/// EndVarName: 'e' (as a VarDecl)
|
||||
/// ConditionEndVarName: 'g' (as a VarDecl)
|
||||
/// In the second example only:
|
||||
/// EndCallName: 'container.end()' (as a CXXMemberCallExpr)
|
||||
///
|
||||
/// Client code will need to make sure that:
|
||||
/// - The iterator variables 'it', 'f', and 'h' are the same.
|
||||
/// - The two containers on which 'begin' and 'end' are called are the same.
|
||||
/// - If the end iterator variable 'g' is defined, it is the same as 'f'.
|
||||
StatementMatcher makeIteratorLoopMatcher() {
|
||||
StatementMatcher BeginCallMatcher =
|
||||
memberCallExpr(argumentCountIs(0), callee(methodDecl(hasName("begin"))))
|
||||
.bind(BeginCallName);
|
||||
|
||||
DeclarationMatcher InitDeclMatcher =
|
||||
varDecl(hasInitializer(anyOf(ignoringParenImpCasts(BeginCallMatcher),
|
||||
materializeTemporaryExpr(
|
||||
ignoringParenImpCasts(BeginCallMatcher)),
|
||||
hasDescendant(BeginCallMatcher))))
|
||||
.bind(InitVarName);
|
||||
|
||||
DeclarationMatcher EndDeclMatcher =
|
||||
varDecl(hasInitializer(anything())).bind(EndVarName);
|
||||
|
||||
StatementMatcher EndCallMatcher =
|
||||
memberCallExpr(argumentCountIs(0), callee(methodDecl(hasName("end"))));
|
||||
|
||||
StatementMatcher IteratorBoundMatcher =
|
||||
expr(anyOf(ignoringParenImpCasts(
|
||||
declRefExpr(to(varDecl().bind(ConditionEndVarName)))),
|
||||
ignoringParenImpCasts(expr(EndCallMatcher).bind(EndCallName)),
|
||||
materializeTemporaryExpr(ignoringParenImpCasts(
|
||||
expr(EndCallMatcher).bind(EndCallName)))));
|
||||
|
||||
StatementMatcher IteratorComparisonMatcher = expr(
|
||||
ignoringParenImpCasts(declRefExpr(to(varDecl().bind(ConditionVarName)))));
|
||||
|
||||
StatementMatcher OverloadedNEQMatcher =
|
||||
operatorCallExpr(hasOverloadedOperatorName("!="), argumentCountIs(2),
|
||||
hasArgument(0, IteratorComparisonMatcher),
|
||||
hasArgument(1, IteratorBoundMatcher));
|
||||
|
||||
// This matcher tests that a declaration is a CXXRecordDecl that has an
|
||||
// overloaded operator*(). If the operator*() returns by value instead of by
|
||||
// reference then the return type is tagged with DerefByValueResultName.
|
||||
internal::Matcher<VarDecl> TestDerefReturnsByValue =
|
||||
hasType(recordDecl(hasMethod(allOf(
|
||||
hasOverloadedOperatorName("*"),
|
||||
anyOf(
|
||||
// Tag the return type if it's by value.
|
||||
returns(qualType(unless(hasCanonicalType(referenceType())))
|
||||
.bind(DerefByValueResultName)),
|
||||
returns(
|
||||
// Skip loops where the iterator's operator* returns an
|
||||
// rvalue reference. This is just weird.
|
||||
qualType(unless(hasCanonicalType(rValueReferenceType())))
|
||||
.bind(DerefByRefResultName)))))));
|
||||
|
||||
return forStmt(
|
||||
hasLoopInit(anyOf(declStmt(declCountIs(2),
|
||||
containsDeclaration(0, InitDeclMatcher),
|
||||
containsDeclaration(1, EndDeclMatcher)),
|
||||
declStmt(hasSingleDecl(InitDeclMatcher)))),
|
||||
hasCondition(
|
||||
anyOf(binaryOperator(hasOperatorName("!="),
|
||||
hasLHS(IteratorComparisonMatcher),
|
||||
hasRHS(IteratorBoundMatcher)),
|
||||
binaryOperator(hasOperatorName("!="),
|
||||
hasLHS(IteratorBoundMatcher),
|
||||
hasRHS(IteratorComparisonMatcher)),
|
||||
OverloadedNEQMatcher)),
|
||||
hasIncrement(anyOf(
|
||||
unaryOperator(hasOperatorName("++"),
|
||||
hasUnaryOperand(declRefExpr(
|
||||
to(varDecl(hasType(pointsTo(AnyType)))
|
||||
.bind(IncrementVarName))))),
|
||||
operatorCallExpr(
|
||||
hasOverloadedOperatorName("++"),
|
||||
hasArgument(
|
||||
0, declRefExpr(to(varDecl(TestDerefReturnsByValue)
|
||||
.bind(IncrementVarName))))))))
|
||||
.bind(LoopNameIterator);
|
||||
}
|
||||
|
||||
/// \brief The matcher used for array-like containers (pseudoarrays).
|
||||
///
|
||||
/// This matcher is more flexible than array-based loops. It will match
|
||||
/// loops of the following textual forms (regardless of whether the
|
||||
/// iterator type is actually a pointer type or a class type):
|
||||
///
|
||||
/// Assuming f, g, and h are of type containerType::iterator,
|
||||
/// \code
|
||||
/// for (int i = 0, j = container.size(); f < g; ++h) { ... }
|
||||
/// for (int i = 0; f < container.size(); ++h) { ... }
|
||||
/// \endcode
|
||||
/// The following string identifiers are bound to the parts of the AST:
|
||||
/// InitVarName: 'i' (as a VarDecl)
|
||||
/// ConditionVarName: 'f' (as a VarDecl)
|
||||
/// LoopName: The entire for loop (as a ForStmt)
|
||||
/// In the first example only:
|
||||
/// EndVarName: 'j' (as a VarDecl)
|
||||
/// ConditionEndVarName: 'g' (as a VarDecl)
|
||||
/// In the second example only:
|
||||
/// EndCallName: 'container.size()' (as a CXXMemberCallExpr)
|
||||
///
|
||||
/// Client code will need to make sure that:
|
||||
/// - The index variables 'i', 'f', and 'h' are the same.
|
||||
/// - The containers on which 'size()' is called is the container indexed.
|
||||
/// - The index variable is only used in overloaded operator[] or
|
||||
/// container.at().
|
||||
/// - If the end iterator variable 'g' is defined, it is the same as 'j'.
|
||||
/// - The container's iterators would not be invalidated during the loop.
|
||||
StatementMatcher makePseudoArrayLoopMatcher() {
|
||||
// Test that the incoming type has a record declaration that has methods
|
||||
// called 'begin' and 'end'. If the incoming type is const, then make sure
|
||||
// these methods are also marked const.
|
||||
//
|
||||
// FIXME: To be completely thorough this matcher should also ensure the
|
||||
// return type of begin/end is an iterator that dereferences to the same as
|
||||
// what operator[] or at() returns. Such a test isn't likely to fail except
|
||||
// for pathological cases.
|
||||
//
|
||||
// FIXME: Also, a record doesn't necessarily need begin() and end(). Free
|
||||
// functions called begin() and end() taking the container as an argument
|
||||
// are also allowed.
|
||||
TypeMatcher RecordWithBeginEnd = qualType(
|
||||
anyOf(qualType(isConstQualified(),
|
||||
hasDeclaration(recordDecl(
|
||||
hasMethod(methodDecl(hasName("begin"), isConst())),
|
||||
hasMethod(methodDecl(hasName("end"),
|
||||
isConst())))) // hasDeclaration
|
||||
), // qualType
|
||||
qualType(unless(isConstQualified()),
|
||||
hasDeclaration(
|
||||
recordDecl(hasMethod(hasName("begin")),
|
||||
hasMethod(hasName("end"))))) // qualType
|
||||
));
|
||||
|
||||
StatementMatcher SizeCallMatcher = memberCallExpr(
|
||||
argumentCountIs(0),
|
||||
callee(methodDecl(anyOf(hasName("size"), hasName("length")))),
|
||||
on(anyOf(hasType(pointsTo(RecordWithBeginEnd)),
|
||||
hasType(RecordWithBeginEnd))));
|
||||
|
||||
StatementMatcher EndInitMatcher =
|
||||
expr(anyOf(ignoringParenImpCasts(expr(SizeCallMatcher).bind(EndCallName)),
|
||||
explicitCastExpr(hasSourceExpression(ignoringParenImpCasts(
|
||||
expr(SizeCallMatcher).bind(EndCallName))))));
|
||||
|
||||
DeclarationMatcher EndDeclMatcher =
|
||||
varDecl(hasInitializer(EndInitMatcher)).bind(EndVarName);
|
||||
|
||||
StatementMatcher IndexBoundMatcher =
|
||||
expr(anyOf(ignoringParenImpCasts(declRefExpr(to(
|
||||
varDecl(hasType(isInteger())).bind(ConditionEndVarName)))),
|
||||
EndInitMatcher));
|
||||
|
||||
return forStmt(
|
||||
hasLoopInit(
|
||||
anyOf(declStmt(declCountIs(2),
|
||||
containsDeclaration(0, InitToZeroMatcher),
|
||||
containsDeclaration(1, EndDeclMatcher)),
|
||||
declStmt(hasSingleDecl(InitToZeroMatcher)))),
|
||||
hasCondition(anyOf(
|
||||
binaryOperator(hasOperatorName("<"),
|
||||
hasLHS(IntegerComparisonMatcher),
|
||||
hasRHS(IndexBoundMatcher)),
|
||||
binaryOperator(hasOperatorName(">"), hasLHS(IndexBoundMatcher),
|
||||
hasRHS(IntegerComparisonMatcher)))),
|
||||
hasIncrement(unaryOperator(hasOperatorName("++"),
|
||||
hasUnaryOperand(IncrementVarMatcher))))
|
||||
.bind(LoopNamePseudoArray);
|
||||
}
|
||||
|
||||
/// \brief Determine whether Init appears to be an initializing an iterator.
|
||||
///
|
||||
/// If it is, returns the object whose begin() or end() method is called, and
|
||||
/// the output parameter isArrow is set to indicate whether the initialization
|
||||
/// is called via . or ->.
|
||||
static const Expr *getContainerFromBeginEndCall(const Expr *Init, bool IsBegin,
|
||||
bool *IsArrow) {
|
||||
// FIXME: Maybe allow declaration/initialization outside of the for loop.
|
||||
const auto *TheCall =
|
||||
dyn_cast_or_null<CXXMemberCallExpr>(digThroughConstructors(Init));
|
||||
if (!TheCall || TheCall->getNumArgs() != 0)
|
||||
return nullptr;
|
||||
|
||||
const auto *Member = dyn_cast<MemberExpr>(TheCall->getCallee());
|
||||
if (!Member)
|
||||
return nullptr;
|
||||
StringRef Name = Member->getMemberDecl()->getName();
|
||||
StringRef TargetName = IsBegin ? "begin" : "end";
|
||||
if (Name != TargetName)
|
||||
return nullptr;
|
||||
|
||||
const Expr *SourceExpr = Member->getBase();
|
||||
if (!SourceExpr)
|
||||
return nullptr;
|
||||
|
||||
*IsArrow = Member->isArrow();
|
||||
return SourceExpr;
|
||||
}
|
||||
|
||||
/// \brief Determines the container whose begin() and end() functions are called
|
||||
/// for an iterator-based loop.
|
||||
///
|
||||
/// BeginExpr must be a member call to a function named "begin()", and EndExpr
|
||||
/// must be a member.
|
||||
static const Expr *findContainer(ASTContext *Context, const Expr *BeginExpr,
|
||||
const Expr *EndExpr,
|
||||
bool *ContainerNeedsDereference) {
|
||||
// Now that we know the loop variable and test expression, make sure they are
|
||||
// valid.
|
||||
bool BeginIsArrow = false;
|
||||
bool EndIsArrow = false;
|
||||
const Expr *BeginContainerExpr =
|
||||
getContainerFromBeginEndCall(BeginExpr, /*IsBegin=*/true, &BeginIsArrow);
|
||||
if (!BeginContainerExpr)
|
||||
return nullptr;
|
||||
|
||||
const Expr *EndContainerExpr =
|
||||
getContainerFromBeginEndCall(EndExpr, /*IsBegin=*/false, &EndIsArrow);
|
||||
// Disallow loops that try evil things like this (note the dot and arrow):
|
||||
// for (IteratorType It = Obj.begin(), E = Obj->end(); It != E; ++It) { }
|
||||
if (!EndContainerExpr || BeginIsArrow != EndIsArrow ||
|
||||
!areSameExpr(Context, EndContainerExpr, BeginContainerExpr))
|
||||
return nullptr;
|
||||
|
||||
*ContainerNeedsDereference = BeginIsArrow;
|
||||
return BeginContainerExpr;
|
||||
}
|
||||
|
||||
/// \brief Obtain the original source code text from a SourceRange.
|
||||
static StringRef getStringFromRange(SourceManager &SourceMgr,
|
||||
const LangOptions &LangOpts,
|
||||
SourceRange Range) {
|
||||
if (SourceMgr.getFileID(Range.getBegin()) !=
|
||||
SourceMgr.getFileID(Range.getEnd()))
|
||||
return nullptr;
|
||||
|
||||
return Lexer::getSourceText(CharSourceRange(Range, true), SourceMgr,
|
||||
LangOpts);
|
||||
}
|
||||
|
||||
/// \brief If the given expression is actually a DeclRefExpr, find and return
|
||||
/// the underlying VarDecl; otherwise, return NULL.
|
||||
static const VarDecl *getReferencedVariable(const Expr *E) {
|
||||
if (const DeclRefExpr *DRE = getDeclRef(E))
|
||||
return dyn_cast<VarDecl>(DRE->getDecl());
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// \brief Returns true when the given expression is a member expression
|
||||
/// whose base is `this` (implicitly or not).
|
||||
static bool isDirectMemberExpr(const Expr *E) {
|
||||
if (const auto *Member = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
|
||||
return isa<CXXThisExpr>(Member->getBase()->IgnoreParenImpCasts());
|
||||
return false;
|
||||
}
|
||||
|
||||
LoopConvertCheck::LoopConvertCheck(StringRef Name, ClangTidyContext *Context)
|
||||
: ClangTidyCheck(Name, Context), TUInfo(new TUTrackingInfo),
|
||||
MinConfidence(StringSwitch<Confidence::Level>(
|
||||
Options.get("MinConfidence", "reasonable"))
|
||||
.Case("safe", Confidence::CL_Safe)
|
||||
.Case("risky", Confidence::CL_Risky)
|
||||
.Default(Confidence::CL_Reasonable)) {}
|
||||
|
||||
void LoopConvertCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
|
||||
SmallVector<std::string, 3> Confs{"risky", "reasonable", "safe"};
|
||||
Options.store(Opts, "MinConfidence", Confs[static_cast<int>(MinConfidence)]);
|
||||
}
|
||||
|
||||
/// \brief Computes the changes needed to convert a given for loop, and
|
||||
/// applies it.
|
||||
void LoopConvertCheck::doConversion(
|
||||
ASTContext *Context, const VarDecl *IndexVar, const VarDecl *MaybeContainer,
|
||||
StringRef ContainerString, const UsageResult &Usages,
|
||||
const DeclStmt *AliasDecl, bool AliasUseRequired, bool AliasFromForInit,
|
||||
const ForStmt *TheLoop, bool ContainerNeedsDereference, bool DerefByValue,
|
||||
bool DerefByConstRef) {
|
||||
auto Diag = diag(TheLoop->getForLoc(), "use range-based for loop instead");
|
||||
|
||||
std::string VarName;
|
||||
bool VarNameFromAlias = (Usages.size() == 1) && AliasDecl;
|
||||
bool AliasVarIsRef = false;
|
||||
|
||||
if (VarNameFromAlias) {
|
||||
const auto *AliasVar = cast<VarDecl>(AliasDecl->getSingleDecl());
|
||||
VarName = AliasVar->getName().str();
|
||||
AliasVarIsRef = AliasVar->getType()->isReferenceType();
|
||||
|
||||
// We keep along the entire DeclStmt to keep the correct range here.
|
||||
const SourceRange &ReplaceRange = AliasDecl->getSourceRange();
|
||||
|
||||
std::string ReplacementText;
|
||||
if (AliasUseRequired) {
|
||||
ReplacementText = VarName;
|
||||
} else if (AliasFromForInit) {
|
||||
// FIXME: Clang includes the location of the ';' but only for DeclStmt's
|
||||
// in a for loop's init clause. Need to put this ';' back while removing
|
||||
// the declaration of the alias variable. This is probably a bug.
|
||||
ReplacementText = ";";
|
||||
}
|
||||
|
||||
Diag << FixItHint::CreateReplacement(
|
||||
CharSourceRange::getTokenRange(ReplaceRange), ReplacementText);
|
||||
// No further replacements are made to the loop, since the iterator or index
|
||||
// was used exactly once - in the initialization of AliasVar.
|
||||
} else {
|
||||
VariableNamer Namer(&TUInfo->getGeneratedDecls(),
|
||||
&TUInfo->getParentFinder().getStmtToParentStmtMap(),
|
||||
TheLoop, IndexVar, MaybeContainer, Context);
|
||||
VarName = Namer.createIndexName();
|
||||
// First, replace all usages of the array subscript expression with our new
|
||||
// variable.
|
||||
for (const auto &I : Usages) {
|
||||
StringRef ReplaceText = I.IsArrow ? VarName + "." : VarName;
|
||||
TUInfo->getReplacedVars().insert(std::make_pair(TheLoop, IndexVar));
|
||||
Diag << FixItHint::CreateReplacement(
|
||||
CharSourceRange::getTokenRange(I.Range), ReplaceText);
|
||||
}
|
||||
}
|
||||
|
||||
// Now, we need to construct the new range expression.
|
||||
SourceRange ParenRange(TheLoop->getLParenLoc(), TheLoop->getRParenLoc());
|
||||
|
||||
QualType AutoRefType = Context->getAutoDeductType();
|
||||
|
||||
// If the new variable name is from the aliased variable, then the reference
|
||||
// type for the new variable should only be used if the aliased variable was
|
||||
// declared as a reference.
|
||||
if (!VarNameFromAlias || AliasVarIsRef) {
|
||||
// If an iterator's operator*() returns a 'T&' we can bind that to 'auto&'.
|
||||
// If operator*() returns 'T' we can bind that to 'auto&&' which will deduce
|
||||
// to 'T&&&'.
|
||||
if (DerefByValue) {
|
||||
AutoRefType = Context->getRValueReferenceType(AutoRefType);
|
||||
} else {
|
||||
if (DerefByConstRef)
|
||||
AutoRefType = Context->getConstType(AutoRefType);
|
||||
AutoRefType = Context->getLValueReferenceType(AutoRefType);
|
||||
}
|
||||
}
|
||||
|
||||
StringRef MaybeDereference = ContainerNeedsDereference ? "*" : "";
|
||||
StringRef TypeString = AutoRefType.getAsString();
|
||||
StringRef Range = ("(" + TypeString + " " + VarName + " : " +
|
||||
MaybeDereference + ContainerString + ")")
|
||||
.str();
|
||||
|
||||
Diag << FixItHint::CreateReplacement(
|
||||
CharSourceRange::getTokenRange(ParenRange), Range);
|
||||
TUInfo->getGeneratedDecls().insert(make_pair(TheLoop, VarName));
|
||||
}
|
||||
|
||||
/// \brief Determine if the change should be deferred or rejected, returning
|
||||
/// text which refers to the container iterated over if the change should
|
||||
/// proceed.
|
||||
StringRef LoopConvertCheck::checkRejections(ASTContext *Context,
|
||||
const Expr *ContainerExpr,
|
||||
const ForStmt *TheLoop) {
|
||||
// If we already modified the reange of this for loop, don't do any further
|
||||
// updates on this iteration.
|
||||
if (TUInfo->getReplacedVars().count(TheLoop))
|
||||
return "";
|
||||
|
||||
Context->getTranslationUnitDecl();
|
||||
TUInfo->getParentFinder();
|
||||
TUInfo->getParentFinder().gatherAncestors(Context->getTranslationUnitDecl());
|
||||
// Ensure that we do not try to move an expression dependent on a local
|
||||
// variable declared inside the loop outside of it.
|
||||
DependencyFinderASTVisitor DependencyFinder(
|
||||
&TUInfo->getParentFinder().getStmtToParentStmtMap(),
|
||||
&TUInfo->getParentFinder().getDeclToParentStmtMap(),
|
||||
&TUInfo->getReplacedVars(), TheLoop);
|
||||
|
||||
// FIXME: Determine when the external dependency isn't an expression converted
|
||||
// by another loop.
|
||||
if (DependencyFinder.dependsOnInsideVariable(ContainerExpr))
|
||||
return "";
|
||||
|
||||
StringRef ContainerString;
|
||||
if (isa<CXXThisExpr>(ContainerExpr->IgnoreParenImpCasts())) {
|
||||
ContainerString = "this";
|
||||
} else {
|
||||
ContainerString =
|
||||
getStringFromRange(Context->getSourceManager(), Context->getLangOpts(),
|
||||
ContainerExpr->getSourceRange());
|
||||
}
|
||||
|
||||
return ContainerString;
|
||||
}
|
||||
|
||||
/// \brief Given a loop header that would be convertible, discover all usages
|
||||
/// of the index variable and convert the loop if possible.
|
||||
void LoopConvertCheck::findAndVerifyUsages(
|
||||
ASTContext *Context, const VarDecl *LoopVar, const VarDecl *EndVar,
|
||||
const Expr *ContainerExpr, const Expr *BoundExpr,
|
||||
bool ContainerNeedsDereference, bool DerefByValue, bool DerefByConstRef,
|
||||
const ForStmt *TheLoop, LoopFixerKind FixerKind) {
|
||||
ForLoopIndexUseVisitor Finder(Context, LoopVar, EndVar, ContainerExpr,
|
||||
BoundExpr, ContainerNeedsDereference);
|
||||
|
||||
if (ContainerExpr) {
|
||||
ComponentFinderASTVisitor ComponentFinder;
|
||||
ComponentFinder.findExprComponents(ContainerExpr->IgnoreParenImpCasts());
|
||||
Finder.addComponents(ComponentFinder.getComponents());
|
||||
}
|
||||
|
||||
if (!Finder.findAndVerifyUsages(TheLoop->getBody()))
|
||||
return;
|
||||
|
||||
Confidence ConfidenceLevel(Finder.getConfidenceLevel());
|
||||
if (FixerKind == LFK_Array) {
|
||||
// The array being indexed by IndexVar was discovered during traversal.
|
||||
ContainerExpr = Finder.getContainerIndexed()->IgnoreParenImpCasts();
|
||||
// Very few loops are over expressions that generate arrays rather than
|
||||
// array variables. Consider loops over arrays that aren't just represented
|
||||
// by a variable to be risky conversions.
|
||||
if (!getReferencedVariable(ContainerExpr) &&
|
||||
!isDirectMemberExpr(ContainerExpr))
|
||||
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
|
||||
}
|
||||
|
||||
StringRef ContainerString = checkRejections(Context, ContainerExpr, TheLoop);
|
||||
|
||||
if (ContainerString.empty() || ConfidenceLevel.getLevel() < MinConfidence)
|
||||
return;
|
||||
|
||||
doConversion(Context, LoopVar, getReferencedVariable(ContainerExpr),
|
||||
ContainerString, Finder.getUsages(), Finder.getAliasDecl(),
|
||||
Finder.aliasUseRequired(), Finder.aliasFromForInit(), TheLoop,
|
||||
ContainerNeedsDereference, DerefByValue, DerefByConstRef);
|
||||
}
|
||||
|
||||
void LoopConvertCheck::registerMatchers(MatchFinder *Finder) {
|
||||
Finder->addMatcher(makeArrayLoopMatcher(), this);
|
||||
Finder->addMatcher(makeIteratorLoopMatcher(), this);
|
||||
Finder->addMatcher(makePseudoArrayLoopMatcher(), this);
|
||||
}
|
||||
|
||||
void LoopConvertCheck::check(const MatchFinder::MatchResult &Result) {
|
||||
const BoundNodes &Nodes = Result.Nodes;
|
||||
Confidence ConfidenceLevel(Confidence::CL_Safe);
|
||||
ASTContext *Context = Result.Context;
|
||||
|
||||
const ForStmt *TheLoop;
|
||||
LoopFixerKind FixerKind;
|
||||
|
||||
if ((TheLoop = Nodes.getStmtAs<ForStmt>(LoopNameArray))) {
|
||||
FixerKind = LFK_Array;
|
||||
} else if ((TheLoop = Nodes.getStmtAs<ForStmt>(LoopNameIterator))) {
|
||||
FixerKind = LFK_Iterator;
|
||||
} else {
|
||||
TheLoop = Nodes.getStmtAs<ForStmt>(LoopNamePseudoArray);
|
||||
assert(TheLoop && "Bad Callback. No for statement");
|
||||
FixerKind = LFK_PseudoArray;
|
||||
}
|
||||
|
||||
// Check that we have exactly one index variable and at most one end variable.
|
||||
const auto *LoopVar = Nodes.getDeclAs<VarDecl>(IncrementVarName);
|
||||
const auto *CondVar = Nodes.getDeclAs<VarDecl>(ConditionVarName);
|
||||
const auto *InitVar = Nodes.getDeclAs<VarDecl>(InitVarName);
|
||||
if (!areSameVariable(LoopVar, CondVar) || !areSameVariable(LoopVar, InitVar))
|
||||
return;
|
||||
const auto *EndVar = Nodes.getDeclAs<VarDecl>(EndVarName);
|
||||
const auto *ConditionEndVar = Nodes.getDeclAs<VarDecl>(ConditionEndVarName);
|
||||
if (EndVar && !areSameVariable(EndVar, ConditionEndVar))
|
||||
return;
|
||||
|
||||
// If the end comparison isn't a variable, we can try to work with the
|
||||
// expression the loop variable is being tested against instead.
|
||||
const auto *EndCall = Nodes.getStmtAs<CXXMemberCallExpr>(EndCallName);
|
||||
const auto *BoundExpr = Nodes.getStmtAs<Expr>(ConditionBoundName);
|
||||
// If the loop calls end()/size() after each iteration, lower our confidence
|
||||
// level.
|
||||
if (FixerKind != LFK_Array && !EndVar)
|
||||
ConfidenceLevel.lowerTo(Confidence::CL_Reasonable);
|
||||
|
||||
const Expr *ContainerExpr = nullptr;
|
||||
bool DerefByValue = false;
|
||||
bool DerefByConstRef = false;
|
||||
bool ContainerNeedsDereference = false;
|
||||
// FIXME: Try to put most of this logic inside a matcher. Currently, matchers
|
||||
// don't allow the ight-recursive checks in digThroughConstructors.
|
||||
if (FixerKind == LFK_Iterator) {
|
||||
ContainerExpr = findContainer(Context, LoopVar->getInit(),
|
||||
EndVar ? EndVar->getInit() : EndCall,
|
||||
&ContainerNeedsDereference);
|
||||
|
||||
QualType InitVarType = InitVar->getType();
|
||||
QualType CanonicalInitVarType = InitVarType.getCanonicalType();
|
||||
|
||||
const auto *BeginCall = Nodes.getNodeAs<CXXMemberCallExpr>(BeginCallName);
|
||||
assert(BeginCall && "Bad Callback. No begin call expression");
|
||||
QualType CanonicalBeginType =
|
||||
BeginCall->getMethodDecl()->getReturnType().getCanonicalType();
|
||||
if (CanonicalBeginType->isPointerType() &&
|
||||
CanonicalInitVarType->isPointerType()) {
|
||||
QualType BeginPointeeType = CanonicalBeginType->getPointeeType();
|
||||
QualType InitPointeeType = CanonicalInitVarType->getPointeeType();
|
||||
// If the initializer and the variable are both pointers check if the
|
||||
// un-qualified pointee types match otherwise we don't use auto.
|
||||
if (!Context->hasSameUnqualifiedType(InitPointeeType, BeginPointeeType))
|
||||
return;
|
||||
} else {
|
||||
// Check for qualified types to avoid conversions from non-const to const
|
||||
// iterator types.
|
||||
if (!Context->hasSameType(CanonicalInitVarType, CanonicalBeginType))
|
||||
return;
|
||||
}
|
||||
|
||||
DerefByValue = Nodes.getNodeAs<QualType>(DerefByValueResultName) != nullptr;
|
||||
if (!DerefByValue) {
|
||||
if (const auto *DerefType =
|
||||
Nodes.getNodeAs<QualType>(DerefByRefResultName)) {
|
||||
// A node will only be bound with DerefByRefResultName if we're dealing
|
||||
// with a user-defined iterator type. Test the const qualification of
|
||||
// the reference type.
|
||||
DerefByConstRef = (*DerefType)
|
||||
->getAs<ReferenceType>()
|
||||
->getPointeeType()
|
||||
.isConstQualified();
|
||||
} else {
|
||||
// By nature of the matcher this case is triggered only for built-in
|
||||
// iterator types (i.e. pointers).
|
||||
assert(isa<PointerType>(CanonicalInitVarType) &&
|
||||
"Non-class iterator type is not a pointer type");
|
||||
QualType InitPointeeType = CanonicalInitVarType->getPointeeType();
|
||||
QualType BeginPointeeType = CanonicalBeginType->getPointeeType();
|
||||
// If the initializer and variable have both the same type just use auto
|
||||
// otherwise we test for const qualification of the pointed-at type.
|
||||
if (!Context->hasSameType(InitPointeeType, BeginPointeeType))
|
||||
DerefByConstRef = InitPointeeType.isConstQualified();
|
||||
}
|
||||
} else {
|
||||
// If the dereference operator returns by value then test for the
|
||||
// canonical const qualification of the init variable type.
|
||||
DerefByConstRef = CanonicalInitVarType.isConstQualified();
|
||||
}
|
||||
} else if (FixerKind == LFK_PseudoArray) {
|
||||
if (!EndCall)
|
||||
return;
|
||||
ContainerExpr = EndCall->getImplicitObjectArgument();
|
||||
const auto *Member = dyn_cast<MemberExpr>(EndCall->getCallee());
|
||||
if (!Member)
|
||||
return;
|
||||
ContainerNeedsDereference = Member->isArrow();
|
||||
}
|
||||
|
||||
// We must know the container or an array length bound.
|
||||
if (!ContainerExpr && !BoundExpr)
|
||||
return;
|
||||
|
||||
if (ConfidenceLevel.getLevel() < MinConfidence)
|
||||
return;
|
||||
|
||||
findAndVerifyUsages(Context, LoopVar, EndVar, ContainerExpr, BoundExpr,
|
||||
ContainerNeedsDereference, DerefByValue, DerefByConstRef,
|
||||
TheLoop, FixerKind);
|
||||
}
|
||||
|
||||
} // namespace modernize
|
||||
} // namespace tidy
|
||||
} // namespace clang
|
|
@ -0,0 +1,52 @@
|
|||
//===--- LoopConvertCheck.h - clang-tidy-------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_H
|
||||
#define LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_H
|
||||
|
||||
#include "../ClangTidy.h"
|
||||
#include "LoopConvertUtils.h"
|
||||
|
||||
namespace clang {
|
||||
namespace tidy {
|
||||
namespace modernize {
|
||||
|
||||
class LoopConvertCheck : public ClangTidyCheck {
|
||||
public:
|
||||
LoopConvertCheck(StringRef Name, ClangTidyContext *Context);
|
||||
void storeOptions(ClangTidyOptions::OptionMap &Opts) override;
|
||||
void registerMatchers(ast_matchers::MatchFinder *Finder) override;
|
||||
void check(const ast_matchers::MatchFinder::MatchResult &Result) override;
|
||||
|
||||
private:
|
||||
void doConversion(ASTContext *Context, const VarDecl *IndexVar,
|
||||
const VarDecl *MaybeContainer, StringRef ContainerString,
|
||||
const UsageResult &Usages, const DeclStmt *AliasDecl,
|
||||
bool AliasUseRequired, bool AliasFromForInit,
|
||||
const ForStmt *TheLoop, bool ContainerNeedsDereference,
|
||||
bool DerefByValue, bool DerefByConstRef);
|
||||
|
||||
StringRef checkRejections(ASTContext *Context, const Expr *ContainerExpr,
|
||||
const ForStmt *TheLoop);
|
||||
|
||||
void findAndVerifyUsages(ASTContext *Context, const VarDecl *LoopVar,
|
||||
const VarDecl *EndVar, const Expr *ContainerExpr,
|
||||
const Expr *BoundExpr,
|
||||
bool ContainerNeedsDereference, bool DerefByValue,
|
||||
bool DerefByConstRef, const ForStmt *TheLoop,
|
||||
LoopFixerKind FixerKind);
|
||||
std::unique_ptr<TUTrackingInfo> TUInfo;
|
||||
Confidence::Level MinConfidence;
|
||||
};
|
||||
|
||||
} // namespace modernize
|
||||
} // namespace tidy
|
||||
} // namespace clang
|
||||
|
||||
#endif // LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_H
|
|
@ -0,0 +1,817 @@
|
|||
//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "LoopConvertUtils.h"
|
||||
|
||||
using namespace clang::ast_matchers;
|
||||
using namespace clang::tooling;
|
||||
using namespace clang;
|
||||
using namespace llvm;
|
||||
|
||||
namespace clang {
|
||||
namespace tidy {
|
||||
namespace modernize {
|
||||
|
||||
/// \brief Tracks a stack of parent statements during traversal.
|
||||
///
|
||||
/// All this really does is inject push_back() before running
|
||||
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
|
||||
/// the stack is the parent of the current statement (NULL for the topmost
|
||||
/// statement).
|
||||
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
|
||||
StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
|
||||
StmtStack.push_back(Statement);
|
||||
RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
|
||||
StmtStack.pop_back();
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Keep track of the DeclStmt associated with each VarDecl.
|
||||
///
|
||||
/// Combined with StmtAncestors, this provides roughly the same information as
|
||||
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
|
||||
/// using StmtAncestors.
|
||||
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
|
||||
for (const auto *decl : Decls->decls()) {
|
||||
if (const auto *V = dyn_cast<VarDecl>(decl))
|
||||
DeclParents.insert(std::make_pair(V, Decls));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief record the DeclRefExpr as part of the parent expression.
|
||||
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
|
||||
Components.push_back(E);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief record the MemberExpr as part of the parent expression.
|
||||
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
|
||||
Components.push_back(Member);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Forward any DeclRefExprs to a check on the referenced variable
|
||||
/// declaration.
|
||||
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
|
||||
if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
|
||||
return VisitVarDecl(V);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Determine if any this variable is declared inside the ContainingStmt.
|
||||
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
|
||||
const Stmt *Curr = DeclParents->lookup(V);
|
||||
// First, see if the variable was declared within an inner scope of the loop.
|
||||
while (Curr != nullptr) {
|
||||
if (Curr == ContainingStmt) {
|
||||
DependsOnInsideVariable = true;
|
||||
return false;
|
||||
}
|
||||
Curr = StmtParents->lookup(Curr);
|
||||
}
|
||||
|
||||
// Next, check if the variable was removed from existence by an earlier
|
||||
// iteration.
|
||||
for (const auto &I : *ReplacedVars) {
|
||||
if (I.second == V) {
|
||||
DependsOnInsideVariable = true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief If we already created a variable for TheLoop, check to make sure
|
||||
/// that the name was not already taken.
|
||||
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
|
||||
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
|
||||
if (I != GeneratedDecls->end() && I->second == Name) {
|
||||
Found = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief If any named declaration within the AST subtree has the same name,
|
||||
/// then consider Name already taken.
|
||||
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
|
||||
const IdentifierInfo *Ident = D->getIdentifier();
|
||||
if (Ident && Ident->getName() == Name) {
|
||||
Found = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Forward any declaration references to the actual check on the
|
||||
/// referenced declaration.
|
||||
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
|
||||
if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
|
||||
return VisitNamedDecl(D);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief If the new variable name conflicts with any type used in the loop,
|
||||
/// then we mark that variable name as taken.
|
||||
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
|
||||
QualType QType = TL.getType();
|
||||
|
||||
// Check if our name conflicts with a type, to handle for typedefs.
|
||||
if (QType.getAsString() == Name) {
|
||||
Found = true;
|
||||
return false;
|
||||
}
|
||||
// Check for base type conflicts. For example, when a struct is being
|
||||
// referenced in the body of the loop, the above getAsString() will return the
|
||||
// whole type (ex. "struct s"), but will be caught here.
|
||||
if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
|
||||
if (Ident->getName() == Name) {
|
||||
Found = true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief Look through conversion/copy constructors to find the explicit
|
||||
/// initialization expression, returning it is found.
|
||||
///
|
||||
/// The main idea is that given
|
||||
/// vector<int> v;
|
||||
/// we consider either of these initializations
|
||||
/// vector<int>::iterator it = v.begin();
|
||||
/// vector<int>::iterator it(v.begin());
|
||||
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
|
||||
/// not include
|
||||
/// vector<int>::iterator it;
|
||||
/// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
|
||||
/// as being initialized from `v.begin()`
|
||||
const Expr *digThroughConstructors(const Expr *E) {
|
||||
if (!E)
|
||||
return nullptr;
|
||||
E = E->IgnoreParenImpCasts();
|
||||
if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
|
||||
// The initial constructor must take exactly one parameter, but base class
|
||||
// and deferred constructors can take more.
|
||||
if (ConstructExpr->getNumArgs() != 1 ||
|
||||
ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
|
||||
return nullptr;
|
||||
E = ConstructExpr->getArg(0);
|
||||
if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
|
||||
E = Temp->GetTemporaryExpr();
|
||||
return digThroughConstructors(E);
|
||||
}
|
||||
return E;
|
||||
}
|
||||
|
||||
/// \brief Returns true when two Exprs are equivalent.
|
||||
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
|
||||
if (!First || !Second)
|
||||
return false;
|
||||
|
||||
llvm::FoldingSetNodeID FirstID, SecondID;
|
||||
First->Profile(FirstID, *Context, true);
|
||||
Second->Profile(SecondID, *Context, true);
|
||||
return FirstID == SecondID;
|
||||
}
|
||||
|
||||
/// \brief Returns the DeclRefExpr represented by E, or NULL if there isn't one.
|
||||
const DeclRefExpr *getDeclRef(const Expr *E) {
|
||||
return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
|
||||
}
|
||||
|
||||
/// \brief Returns true when two ValueDecls are the same variable.
|
||||
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
|
||||
return First && Second &&
|
||||
First->getCanonicalDecl() == Second->getCanonicalDecl();
|
||||
}
|
||||
|
||||
/// \brief Determines if an expression is a declaration reference to a
|
||||
/// particular variable.
|
||||
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
|
||||
if (!Target || !E)
|
||||
return false;
|
||||
const DeclRefExpr *Decl = getDeclRef(E);
|
||||
return Decl && areSameVariable(Target, Decl->getDecl());
|
||||
}
|
||||
|
||||
/// \brief If the expression is a dereference or call to operator*(), return the
|
||||
/// operand. Otherwise, return NULL.
|
||||
static const Expr *getDereferenceOperand(const Expr *E) {
|
||||
if (const auto *Uop = dyn_cast<UnaryOperator>(E))
|
||||
return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;
|
||||
|
||||
if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
|
||||
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
|
||||
? OpCall->getArg(0)
|
||||
: nullptr;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// \brief Returns true when the Container contains an Expr equivalent to E.
|
||||
template <typename ContainerT>
|
||||
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
|
||||
const Expr *E) {
|
||||
llvm::FoldingSetNodeID ID;
|
||||
E->Profile(ID, *Context, true);
|
||||
for (const auto &I : *Container) {
|
||||
if (ID == I.second)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Returns true when the index expression is a declaration reference to
|
||||
/// IndexVar.
|
||||
///
|
||||
/// If the index variable is `index`, this function returns true on
|
||||
/// arrayExpression[index];
|
||||
/// containerExpression[index];
|
||||
/// but not
|
||||
/// containerExpression[notIndex];
|
||||
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
|
||||
const VarDecl *IndexVar) {
|
||||
const DeclRefExpr *Idx = getDeclRef(IndexExpr);
|
||||
return Idx && Idx->getType()->isIntegerType() &&
|
||||
areSameVariable(IndexVar, Idx->getDecl());
|
||||
}
|
||||
|
||||
/// \brief Returns true when the index expression is a declaration reference to
|
||||
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
|
||||
/// implicit casts are stripped off.
|
||||
///
|
||||
/// If PermitDeref is true, IndexExpression may
|
||||
/// be a dereference (overloaded or builtin operator*).
|
||||
///
|
||||
/// This function is intended for array-like containers, as it makes sure that
|
||||
/// both the container and the index match.
|
||||
/// If the loop has index variable `index` and iterates over `container`, then
|
||||
/// isIndexInSubscriptExpr returns true for
|
||||
/// \code
|
||||
/// container[index]
|
||||
/// container.at(index)
|
||||
/// container->at(index)
|
||||
/// \endcode
|
||||
/// but not for
|
||||
/// \code
|
||||
/// container[notIndex]
|
||||
/// notContainer[index]
|
||||
/// \endcode
|
||||
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
|
||||
/// true on these expressions:
|
||||
/// \code
|
||||
/// (*container)[index]
|
||||
/// (*container).at(index)
|
||||
/// \endcode
|
||||
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
|
||||
const VarDecl *IndexVar, const Expr *Obj,
|
||||
const Expr *SourceExpr, bool PermitDeref) {
|
||||
if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
|
||||
return false;
|
||||
|
||||
if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
|
||||
Obj->IgnoreParenImpCasts()))
|
||||
return true;
|
||||
|
||||
if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
|
||||
if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
|
||||
InnerObj->IgnoreParenImpCasts()))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Returns true when Opcall is a call a one-parameter dereference of
|
||||
/// IndexVar.
|
||||
///
|
||||
/// For example, if the index variable is `index`, returns true for
|
||||
/// *index
|
||||
/// but not
|
||||
/// index
|
||||
/// *notIndex
|
||||
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
|
||||
const VarDecl *IndexVar) {
|
||||
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
|
||||
exprReferencesVariable(IndexVar, OpCall->getArg(0));
|
||||
}
|
||||
|
||||
/// \brief Returns true when Uop is a dereference of IndexVar.
|
||||
///
|
||||
/// For example, if the index variable is `index`, returns true for
|
||||
/// *index
|
||||
/// but not
|
||||
/// index
|
||||
/// *notIndex
|
||||
static bool isDereferenceOfUop(const UnaryOperator *Uop,
|
||||
const VarDecl *IndexVar) {
|
||||
return Uop->getOpcode() == UO_Deref &&
|
||||
exprReferencesVariable(IndexVar, Uop->getSubExpr());
|
||||
}
|
||||
|
||||
/// \brief Determines whether the given Decl defines a variable initialized to
|
||||
/// the loop object.
|
||||
///
|
||||
/// This is intended to find cases such as
|
||||
/// \code
|
||||
/// for (int i = 0; i < arraySize(arr); ++i) {
|
||||
/// T t = arr[i];
|
||||
/// // use t, do not use i
|
||||
/// }
|
||||
/// \endcode
|
||||
/// and
|
||||
/// \code
|
||||
/// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
|
||||
/// T t = *i;
|
||||
/// // use t, do not use i
|
||||
/// }
|
||||
/// \endcode
|
||||
static bool isAliasDecl(const Decl *TheDecl, const VarDecl *IndexVar) {
|
||||
const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
|
||||
if (!VDecl)
|
||||
return false;
|
||||
if (!VDecl->hasInit())
|
||||
return false;
|
||||
|
||||
const Expr *Init =
|
||||
digThroughConstructors(VDecl->getInit()->IgnoreParenImpCasts());
|
||||
if (!Init)
|
||||
return false;
|
||||
|
||||
switch (Init->getStmtClass()) {
|
||||
case Stmt::ArraySubscriptExprClass: {
|
||||
const auto *E = cast<ArraySubscriptExpr>(Init);
|
||||
// We don't really care which array is used here. We check to make sure
|
||||
// it was the correct one later, since the AST will traverse it next.
|
||||
return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
|
||||
}
|
||||
|
||||
case Stmt::UnaryOperatorClass:
|
||||
return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
|
||||
|
||||
case Stmt::CXXOperatorCallExprClass: {
|
||||
const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
|
||||
if (OpCall->getOperator() == OO_Star)
|
||||
return isDereferenceOfOpCall(OpCall, IndexVar);
|
||||
if (OpCall->getOperator() == OO_Subscript) {
|
||||
assert(OpCall->getNumArgs() == 2);
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case Stmt::CXXMemberCallExprClass:
|
||||
return true;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \brief Determines whether the bound of a for loop condition expression is
|
||||
/// the same as the statically computable size of ArrayType.
|
||||
///
|
||||
/// Given
|
||||
/// \code
|
||||
/// const int N = 5;
|
||||
/// int arr[N];
|
||||
/// \endcode
|
||||
/// This is intended to permit
|
||||
/// \code
|
||||
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
|
||||
/// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
|
||||
/// \endcode
|
||||
static bool arrayMatchesBoundExpr(ASTContext *Context,
|
||||
const QualType &ArrayType,
|
||||
const Expr *ConditionExpr) {
|
||||
if (!ConditionExpr || ConditionExpr->isValueDependent())
|
||||
return false;
|
||||
const ConstantArrayType *ConstType =
|
||||
Context->getAsConstantArrayType(ArrayType);
|
||||
if (!ConstType)
|
||||
return false;
|
||||
llvm::APSInt ConditionSize;
|
||||
if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context))
|
||||
return false;
|
||||
llvm::APSInt ArraySize(ConstType->getSize());
|
||||
return llvm::APSInt::isSameValue(ConditionSize, ArraySize);
|
||||
}
|
||||
|
||||
ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
|
||||
const VarDecl *IndexVar,
|
||||
const VarDecl *EndVar,
|
||||
const Expr *ContainerExpr,
|
||||
const Expr *ArrayBoundExpr,
|
||||
bool ContainerNeedsDereference)
|
||||
: Context(Context), IndexVar(IndexVar), EndVar(EndVar),
|
||||
ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
|
||||
ContainerNeedsDereference(ContainerNeedsDereference),
|
||||
OnlyUsedAsIndex(true), AliasDecl(nullptr),
|
||||
ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
|
||||
CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
|
||||
AliasFromForInit(false) {
|
||||
if (ContainerExpr) {
|
||||
addComponent(ContainerExpr);
|
||||
FoldingSetNodeID ID;
|
||||
const Expr *E = ContainerExpr->IgnoreParenImpCasts();
|
||||
E->Profile(ID, *Context, true);
|
||||
}
|
||||
}
|
||||
|
||||
bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
|
||||
TraverseStmt(const_cast<Stmt *>(Body));
|
||||
return OnlyUsedAsIndex && ContainerExpr;
|
||||
}
|
||||
|
||||
void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
|
||||
// FIXME: add sort(on ID)+unique to avoid extra work.
|
||||
for (const auto &I : Components)
|
||||
addComponent(I);
|
||||
}
|
||||
|
||||
void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
|
||||
FoldingSetNodeID ID;
|
||||
const Expr *Node = E->IgnoreParenImpCasts();
|
||||
Node->Profile(ID, *Context, true);
|
||||
DependentExprs.push_back(std::make_pair(Node, ID));
|
||||
}
|
||||
|
||||
/// \brief If the unary operator is a dereference of IndexVar, include it
|
||||
/// as a valid usage and prune the traversal.
|
||||
///
|
||||
/// For example, if container.begin() and container.end() both return pointers
|
||||
/// to int, this makes sure that the initialization for `k` is not counted as an
|
||||
/// unconvertible use of the iterator `i`.
|
||||
/// \code
|
||||
/// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
|
||||
/// int k = *i + 2;
|
||||
/// }
|
||||
/// \endcode
|
||||
bool ForLoopIndexUseVisitor::TraverseUnaryDeref(UnaryOperator *Uop) {
|
||||
// If we dereference an iterator that's actually a pointer, count the
|
||||
// occurrence.
|
||||
if (isDereferenceOfUop(Uop, IndexVar)) {
|
||||
Usages.push_back(Usage(Uop));
|
||||
return true;
|
||||
}
|
||||
|
||||
return VisitorBase::TraverseUnaryOperator(Uop);
|
||||
}
|
||||
|
||||
/// \brief If the member expression is operator-> (overloaded or not) on
|
||||
/// IndexVar, include it as a valid usage and prune the traversal.
|
||||
///
|
||||
/// For example, given
|
||||
/// \code
|
||||
/// struct Foo { int bar(); int x; };
|
||||
/// vector<Foo> v;
|
||||
/// \endcode
|
||||
/// the following uses will be considered convertible:
|
||||
/// \code
|
||||
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
|
||||
/// int b = i->bar();
|
||||
/// int k = i->x + 1;
|
||||
/// }
|
||||
/// \endcode
|
||||
/// though
|
||||
/// \code
|
||||
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
|
||||
/// int k = i.insert(1);
|
||||
/// }
|
||||
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
|
||||
/// int b = e->bar();
|
||||
/// }
|
||||
/// \endcode
|
||||
/// will not.
|
||||
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
|
||||
const Expr *Base = Member->getBase();
|
||||
const DeclRefExpr *Obj = getDeclRef(Base);
|
||||
const Expr *ResultExpr = Member;
|
||||
QualType ExprType;
|
||||
if (const auto *Call =
|
||||
dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
|
||||
// If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
|
||||
// the MemberExpr does not have the expression we want. We therefore catch
|
||||
// that instance here.
|
||||
// For example, if vector<Foo>::iterator defines operator->(), then the
|
||||
// example `i->bar()` at the top of this function is a CXXMemberCallExpr
|
||||
// referring to `i->` as the member function called. We want just `i`, so
|
||||
// we take the argument to operator->() as the base object.
|
||||
if (Call->getOperator() == OO_Arrow) {
|
||||
assert(Call->getNumArgs() == 1 &&
|
||||
"Operator-> takes more than one argument");
|
||||
Obj = getDeclRef(Call->getArg(0));
|
||||
ResultExpr = Obj;
|
||||
ExprType = Call->getCallReturnType(*Context);
|
||||
}
|
||||
}
|
||||
|
||||
if (Member->isArrow() && Obj && exprReferencesVariable(IndexVar, Obj)) {
|
||||
if (ExprType.isNull())
|
||||
ExprType = Obj->getType();
|
||||
|
||||
assert(ExprType->isPointerType() && "Operator-> returned non-pointer type");
|
||||
// FIXME: This works around not having the location of the arrow operator.
|
||||
// Consider adding OperatorLoc to MemberExpr?
|
||||
SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
|
||||
Base->getExprLoc(), 0, Context->getSourceManager(),
|
||||
Context->getLangOpts());
|
||||
// If something complicated is happening (i.e. the next token isn't an
|
||||
// arrow), give up on making this work.
|
||||
if (!ArrowLoc.isInvalid()) {
|
||||
Usages.push_back(Usage(ResultExpr, /*IsArrow=*/true,
|
||||
SourceRange(Base->getExprLoc(), ArrowLoc)));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return TraverseStmt(Member->getBase());
|
||||
}
|
||||
|
||||
/// \brief If a member function call is the at() accessor on the container with
|
||||
/// IndexVar as the single argument, include it as a valid usage and prune
|
||||
/// the traversal.
|
||||
///
|
||||
/// Member calls on other objects will not be permitted.
|
||||
/// Calls on the iterator object are not permitted, unless done through
|
||||
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
|
||||
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
|
||||
CXXMemberCallExpr *MemberCall) {
|
||||
auto *Member =
|
||||
dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
|
||||
if (!Member)
|
||||
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
|
||||
|
||||
// We specifically allow an accessor named "at" to let STL in, though
|
||||
// this is restricted to pseudo-arrays by requiring a single, integer
|
||||
// argument.
|
||||
const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
|
||||
if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
|
||||
if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
|
||||
Member->getBase(), ContainerExpr,
|
||||
ContainerNeedsDereference)) {
|
||||
Usages.push_back(Usage(MemberCall));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (containsExpr(Context, &DependentExprs, Member->getBase()))
|
||||
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
|
||||
|
||||
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
|
||||
}
|
||||
|
||||
/// \brief If an overloaded operator call is a dereference of IndexVar or
|
||||
/// a subscript of a the container with IndexVar as the single argument,
|
||||
/// include it as a valid usage and prune the traversal.
|
||||
///
|
||||
/// For example, given
|
||||
/// \code
|
||||
/// struct Foo { int bar(); int x; };
|
||||
/// vector<Foo> v;
|
||||
/// void f(Foo);
|
||||
/// \endcode
|
||||
/// the following uses will be considered convertible:
|
||||
/// \code
|
||||
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
|
||||
/// f(*i);
|
||||
/// }
|
||||
/// for (int i = 0; i < v.size(); ++i) {
|
||||
/// int i = v[i] + 1;
|
||||
/// }
|
||||
/// \endcode
|
||||
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
|
||||
CXXOperatorCallExpr *OpCall) {
|
||||
switch (OpCall->getOperator()) {
|
||||
case OO_Star:
|
||||
if (isDereferenceOfOpCall(OpCall, IndexVar)) {
|
||||
Usages.push_back(Usage(OpCall));
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
|
||||
case OO_Subscript:
|
||||
if (OpCall->getNumArgs() != 2)
|
||||
break;
|
||||
if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
|
||||
OpCall->getArg(0), ContainerExpr,
|
||||
ContainerNeedsDereference)) {
|
||||
Usages.push_back(Usage(OpCall));
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
|
||||
}
|
||||
|
||||
/// \brief If we encounter an array with IndexVar as the index of an
|
||||
/// ArraySubsriptExpression, note it as a consistent usage and prune the
|
||||
/// AST traversal.
|
||||
///
|
||||
/// For example, given
|
||||
/// \code
|
||||
/// const int N = 5;
|
||||
/// int arr[N];
|
||||
/// \endcode
|
||||
/// This is intended to permit
|
||||
/// \code
|
||||
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
|
||||
/// \endcode
|
||||
/// but not
|
||||
/// \code
|
||||
/// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
|
||||
/// \endcode
|
||||
/// and further checking needs to be done later to ensure that exactly one array
|
||||
/// is referenced.
|
||||
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
|
||||
Expr *Arr = E->getBase();
|
||||
if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
|
||||
return VisitorBase::TraverseArraySubscriptExpr(E);
|
||||
|
||||
if ((ContainerExpr &&
|
||||
!areSameExpr(Context, Arr->IgnoreParenImpCasts(),
|
||||
ContainerExpr->IgnoreParenImpCasts())) ||
|
||||
!arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
|
||||
ArrayBoundExpr)) {
|
||||
// If we have already discovered the array being indexed and this isn't it
|
||||
// or this array doesn't match, mark this loop as unconvertible.
|
||||
OnlyUsedAsIndex = false;
|
||||
return VisitorBase::TraverseArraySubscriptExpr(E);
|
||||
}
|
||||
|
||||
if (!ContainerExpr)
|
||||
ContainerExpr = Arr;
|
||||
|
||||
Usages.push_back(Usage(E));
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief If we encounter a reference to IndexVar in an unpruned branch of the
|
||||
/// traversal, mark this loop as unconvertible.
|
||||
///
|
||||
/// This implements the whitelist for convertible loops: any usages of IndexVar
|
||||
/// not explicitly considered convertible by this traversal will be caught by
|
||||
/// this function.
|
||||
///
|
||||
/// Additionally, if the container expression is more complex than just a
|
||||
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
|
||||
/// our confidence in the transformation.
|
||||
///
|
||||
/// For example, these are not permitted:
|
||||
/// \code
|
||||
/// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
|
||||
/// for (vector<int>::iterator i = container.begin(), e = container.end();
|
||||
/// i != e; ++i)
|
||||
/// i.insert(0);
|
||||
/// for (vector<int>::iterator i = container.begin(), e = container.end();
|
||||
/// i != e; ++i)
|
||||
/// i.insert(0);
|
||||
/// for (vector<int>::iterator i = container.begin(), e = container.end();
|
||||
/// i != e; ++i)
|
||||
/// if (i + 1 != e)
|
||||
/// printf("%d", *i);
|
||||
/// \endcode
|
||||
///
|
||||
/// And these will raise the risk level:
|
||||
/// \code
|
||||
/// int arr[10][20];
|
||||
/// int l = 5;
|
||||
/// for (int j = 0; j < 20; ++j)
|
||||
/// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
|
||||
/// for (int i = 0; i < obj.getVector().size(); ++i)
|
||||
/// obj.foo(10); // using `obj` is considered risky
|
||||
/// \endcode
|
||||
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
|
||||
const ValueDecl *TheDecl = E->getDecl();
|
||||
if (areSameVariable(IndexVar, TheDecl) || areSameVariable(EndVar, TheDecl))
|
||||
OnlyUsedAsIndex = false;
|
||||
if (containsExpr(Context, &DependentExprs, E))
|
||||
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// \brief If we find that another variable is created just to refer to the loop
|
||||
/// element, note it for reuse as the loop variable.
|
||||
///
|
||||
/// See the comments for isAliasDecl.
|
||||
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
|
||||
if (!AliasDecl && S->isSingleDecl() &&
|
||||
isAliasDecl(S->getSingleDecl(), IndexVar)) {
|
||||
AliasDecl = S;
|
||||
if (CurrStmtParent) {
|
||||
if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
|
||||
isa<SwitchStmt>(CurrStmtParent))
|
||||
ReplaceWithAliasUse = true;
|
||||
else if (isa<ForStmt>(CurrStmtParent)) {
|
||||
if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
|
||||
ReplaceWithAliasUse = true;
|
||||
else
|
||||
// It's assumed S came the for loop's init clause.
|
||||
AliasFromForInit = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
|
||||
// All this pointer swapping is a mechanism for tracking immediate parentage
|
||||
// of Stmts.
|
||||
const Stmt *OldNextParent = NextStmtParent;
|
||||
CurrStmtParent = NextStmtParent;
|
||||
NextStmtParent = S;
|
||||
bool Result = VisitorBase::TraverseStmt(S);
|
||||
NextStmtParent = OldNextParent;
|
||||
return Result;
|
||||
}
|
||||
|
||||
std::string VariableNamer::createIndexName() {
|
||||
// FIXME: Add in naming conventions to handle:
|
||||
// - Uppercase/lowercase indices.
|
||||
// - How to handle conflicts.
|
||||
// - An interactive process for naming.
|
||||
std::string IteratorName;
|
||||
std::string ContainerName;
|
||||
if (TheContainer)
|
||||
ContainerName = TheContainer->getName().str();
|
||||
|
||||
size_t Len = ContainerName.length();
|
||||
if (Len > 1 && ContainerName[Len - 1] == 's')
|
||||
IteratorName = ContainerName.substr(0, Len - 1);
|
||||
else
|
||||
IteratorName = "elem";
|
||||
|
||||
if (!declarationExists(IteratorName))
|
||||
return IteratorName;
|
||||
|
||||
IteratorName = ContainerName + "_" + OldIndex->getName().str();
|
||||
if (!declarationExists(IteratorName))
|
||||
return IteratorName;
|
||||
|
||||
IteratorName = ContainerName + "_elem";
|
||||
if (!declarationExists(IteratorName))
|
||||
return IteratorName;
|
||||
|
||||
IteratorName += "_elem";
|
||||
if (!declarationExists(IteratorName))
|
||||
return IteratorName;
|
||||
|
||||
IteratorName = "_elem_";
|
||||
|
||||
// Someone defeated my naming scheme...
|
||||
while (declarationExists(IteratorName))
|
||||
IteratorName += "i";
|
||||
return IteratorName;
|
||||
}
|
||||
|
||||
/// \brief Determines whether or not the the name \a Symbol conflicts with
|
||||
/// language keywords or defined macros. Also checks if the name exists in
|
||||
/// LoopContext, any of its parent contexts, or any of its child statements.
|
||||
///
|
||||
/// We also check to see if the same identifier was generated by this loop
|
||||
/// converter in a loop nested within SourceStmt.
|
||||
bool VariableNamer::declarationExists(StringRef Symbol) {
|
||||
assert(Context != nullptr && "Expected an ASTContext");
|
||||
IdentifierInfo &Ident = Context->Idents.get(Symbol);
|
||||
|
||||
// Check if the symbol is not an identifier (ie. is a keyword or alias).
|
||||
if (!isAnyIdentifier(Ident.getTokenID()))
|
||||
return true;
|
||||
|
||||
// Check for conflicting macro definitions.
|
||||
if (Ident.hasMacroDefinition())
|
||||
return true;
|
||||
|
||||
// Determine if the symbol was generated in a parent context.
|
||||
for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
|
||||
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
|
||||
if (I != GeneratedDecls->end() && I->second == Symbol)
|
||||
return true;
|
||||
}
|
||||
|
||||
// FIXME: Rather than detecting conflicts at their usages, we should check the
|
||||
// parent context.
|
||||
// For some reason, lookup() always returns the pair (NULL, NULL) because its
|
||||
// StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
|
||||
// of DeclContext::lookup()). Why is this?
|
||||
|
||||
// Finally, determine if the symbol was used in the loop or a child context.
|
||||
DeclFinderASTVisitor DeclFinder(Symbol, GeneratedDecls);
|
||||
return DeclFinder.findUsages(SourceStmt);
|
||||
}
|
||||
|
||||
} // namespace modernize
|
||||
} // namespace tidy
|
||||
} // namespace clang
|
|
@ -0,0 +1,420 @@
|
|||
//===--- LoopConvertUtils.h - clang-tidy ------------------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_UTILS_H
|
||||
#define LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_UTILS_H
|
||||
|
||||
#include "clang/AST/ASTContext.h"
|
||||
#include "clang/AST/RecursiveASTVisitor.h"
|
||||
#include "clang/ASTMatchers/ASTMatchFinder.h"
|
||||
#include "clang/Lex/Lexer.h"
|
||||
#include "clang/Tooling/Refactoring.h"
|
||||
|
||||
namespace clang {
|
||||
namespace tidy {
|
||||
namespace modernize {
|
||||
|
||||
enum LoopFixerKind { LFK_Array, LFK_Iterator, LFK_PseudoArray };
|
||||
|
||||
/// A map used to walk the AST in reverse: maps child Stmt to parent Stmt.
|
||||
typedef llvm::DenseMap<const clang::Stmt *, const clang::Stmt *> StmtParentMap;
|
||||
|
||||
/// A map used to walk the AST in reverse:
|
||||
/// maps VarDecl to the to parent DeclStmt.
|
||||
typedef llvm::DenseMap<const clang::VarDecl *, const clang::DeclStmt *>
|
||||
DeclParentMap;
|
||||
|
||||
/// A map used to track which variables have been removed by a refactoring pass.
|
||||
/// It maps the parent ForStmt to the removed index variable's VarDecl.
|
||||
typedef llvm::DenseMap<const clang::ForStmt *, const clang::VarDecl *>
|
||||
ReplacedVarsMap;
|
||||
|
||||
/// A map used to remember the variable names generated in a Stmt
|
||||
typedef llvm::DenseMap<const clang::Stmt *, std::string>
|
||||
StmtGeneratedVarNameMap;
|
||||
|
||||
/// A vector used to store the AST subtrees of an Expr.
|
||||
typedef llvm::SmallVector<const clang::Expr *, 16> ComponentVector;
|
||||
|
||||
/// \brief Class used build the reverse AST properties needed to detect
|
||||
/// name conflicts and free variables.
|
||||
class StmtAncestorASTVisitor
|
||||
: public clang::RecursiveASTVisitor<StmtAncestorASTVisitor> {
|
||||
public:
|
||||
StmtAncestorASTVisitor() { StmtStack.push_back(nullptr); }
|
||||
|
||||
/// \brief Run the analysis on the TranslationUnitDecl.
|
||||
///
|
||||
/// In case we're running this analysis multiple times, don't repeat the work.
|
||||
void gatherAncestors(const clang::TranslationUnitDecl *T) {
|
||||
if (StmtAncestors.empty())
|
||||
TraverseDecl(const_cast<clang::TranslationUnitDecl *>(T));
|
||||
}
|
||||
|
||||
/// Accessor for StmtAncestors.
|
||||
const StmtParentMap &getStmtToParentStmtMap() { return StmtAncestors; }
|
||||
|
||||
/// Accessor for DeclParents.
|
||||
const DeclParentMap &getDeclToParentStmtMap() { return DeclParents; }
|
||||
|
||||
friend class clang::RecursiveASTVisitor<StmtAncestorASTVisitor>;
|
||||
|
||||
private:
|
||||
StmtParentMap StmtAncestors;
|
||||
DeclParentMap DeclParents;
|
||||
llvm::SmallVector<const clang::Stmt *, 16> StmtStack;
|
||||
|
||||
bool TraverseStmt(clang::Stmt *Statement);
|
||||
bool VisitDeclStmt(clang::DeclStmt *Statement);
|
||||
};
|
||||
|
||||
/// Class used to find the variables and member expressions on which an
|
||||
/// arbitrary expression depends.
|
||||
class ComponentFinderASTVisitor
|
||||
: public clang::RecursiveASTVisitor<ComponentFinderASTVisitor> {
|
||||
public:
|
||||
ComponentFinderASTVisitor() {}
|
||||
|
||||
/// Find the components of an expression and place them in a ComponentVector.
|
||||
void findExprComponents(const clang::Expr *SourceExpr) {
|
||||
TraverseStmt(const_cast<clang::Expr *>(SourceExpr));
|
||||
}
|
||||
|
||||
/// Accessor for Components.
|
||||
const ComponentVector &getComponents() { return Components; }
|
||||
|
||||
friend class clang::RecursiveASTVisitor<ComponentFinderASTVisitor>;
|
||||
|
||||
private:
|
||||
ComponentVector Components;
|
||||
|
||||
bool VisitDeclRefExpr(clang::DeclRefExpr *E);
|
||||
bool VisitMemberExpr(clang::MemberExpr *Member);
|
||||
};
|
||||
|
||||
/// Class used to determine if an expression is dependent on a variable declared
|
||||
/// inside of the loop where it would be used.
|
||||
class DependencyFinderASTVisitor
|
||||
: public clang::RecursiveASTVisitor<DependencyFinderASTVisitor> {
|
||||
public:
|
||||
DependencyFinderASTVisitor(const StmtParentMap *StmtParents,
|
||||
const DeclParentMap *DeclParents,
|
||||
const ReplacedVarsMap *ReplacedVars,
|
||||
const clang::Stmt *ContainingStmt)
|
||||
: StmtParents(StmtParents), DeclParents(DeclParents),
|
||||
ContainingStmt(ContainingStmt), ReplacedVars(ReplacedVars) {}
|
||||
|
||||
/// \brief Run the analysis on Body, and return true iff the expression
|
||||
/// depends on some variable declared within ContainingStmt.
|
||||
///
|
||||
/// This is intended to protect against hoisting the container expression
|
||||
/// outside of an inner context if part of that expression is declared in that
|
||||
/// inner context.
|
||||
///
|
||||
/// For example,
|
||||
/// \code
|
||||
/// const int N = 10, M = 20;
|
||||
/// int arr[N][M];
|
||||
/// int getRow();
|
||||
///
|
||||
/// for (int i = 0; i < M; ++i) {
|
||||
/// int k = getRow();
|
||||
/// printf("%d:", arr[k][i]);
|
||||
/// }
|
||||
/// \endcode
|
||||
/// At first glance, this loop looks like it could be changed to
|
||||
/// \code
|
||||
/// for (int elem : arr[k]) {
|
||||
/// int k = getIndex();
|
||||
/// printf("%d:", elem);
|
||||
/// }
|
||||
/// \endcode
|
||||
/// But this is malformed, since `k` is used before it is defined!
|
||||
///
|
||||
/// In order to avoid this, this class looks at the container expression
|
||||
/// `arr[k]` and decides whether or not it contains a sub-expression declared
|
||||
/// within the the loop body.
|
||||
bool dependsOnInsideVariable(const clang::Stmt *Body) {
|
||||
DependsOnInsideVariable = false;
|
||||
TraverseStmt(const_cast<clang::Stmt *>(Body));
|
||||
return DependsOnInsideVariable;
|
||||
}
|
||||
|
||||
friend class clang::RecursiveASTVisitor<DependencyFinderASTVisitor>;
|
||||
|
||||
private:
|
||||
const StmtParentMap *StmtParents;
|
||||
const DeclParentMap *DeclParents;
|
||||
const clang::Stmt *ContainingStmt;
|
||||
const ReplacedVarsMap *ReplacedVars;
|
||||
bool DependsOnInsideVariable;
|
||||
|
||||
bool VisitVarDecl(clang::VarDecl *V);
|
||||
bool VisitDeclRefExpr(clang::DeclRefExpr *D);
|
||||
};
|
||||
|
||||
/// Class used to determine if any declarations used in a Stmt would conflict
|
||||
/// with a particular identifier. This search includes the names that don't
|
||||
/// actually appear in the AST (i.e. created by a refactoring tool) by including
|
||||
/// a map from Stmts to generated names associated with those stmts.
|
||||
class DeclFinderASTVisitor
|
||||
: public clang::RecursiveASTVisitor<DeclFinderASTVisitor> {
|
||||
public:
|
||||
DeclFinderASTVisitor(const std::string &Name,
|
||||
const StmtGeneratedVarNameMap *GeneratedDecls)
|
||||
: Name(Name), GeneratedDecls(GeneratedDecls), Found(false) {}
|
||||
|
||||
/// Attempts to find any usages of variables name Name in Body, returning
|
||||
/// true when it is used in Body. This includes the generated loop variables
|
||||
/// of ForStmts which have already been transformed.
|
||||
bool findUsages(const clang::Stmt *Body) {
|
||||
Found = false;
|
||||
TraverseStmt(const_cast<clang::Stmt *>(Body));
|
||||
return Found;
|
||||
}
|
||||
|
||||
friend class clang::RecursiveASTVisitor<DeclFinderASTVisitor>;
|
||||
|
||||
private:
|
||||
std::string Name;
|
||||
/// GeneratedDecls keeps track of ForStmts which have been transformed,
|
||||
/// mapping each modified ForStmt to the variable generated in the loop.
|
||||
const StmtGeneratedVarNameMap *GeneratedDecls;
|
||||
bool Found;
|
||||
|
||||
bool VisitForStmt(clang::ForStmt *F);
|
||||
bool VisitNamedDecl(clang::NamedDecl *D);
|
||||
bool VisitDeclRefExpr(clang::DeclRefExpr *D);
|
||||
bool VisitTypeLoc(clang::TypeLoc TL);
|
||||
};
|
||||
|
||||
/// \brief The information needed to describe a valid convertible usage
|
||||
/// of an array index or iterator.
|
||||
struct Usage {
|
||||
const Expr *E;
|
||||
bool IsArrow;
|
||||
SourceRange Range;
|
||||
|
||||
explicit Usage(const Expr *E)
|
||||
: E(E), IsArrow(false), Range(E->getSourceRange()) {}
|
||||
Usage(const Expr *E, bool IsArrow, SourceRange Range)
|
||||
: E(E), IsArrow(IsArrow), Range(std::move(Range)) {}
|
||||
};
|
||||
|
||||
/// \brief A class to encapsulate lowering of the tool's confidence level.
|
||||
class Confidence {
|
||||
public:
|
||||
enum Level {
|
||||
// Transformations that are likely to change semantics.
|
||||
CL_Risky,
|
||||
|
||||
// Transformations that might change semantics.
|
||||
CL_Reasonable,
|
||||
|
||||
// Transformations that will not change semantics.
|
||||
CL_Safe
|
||||
};
|
||||
/// \brief Initialize confidence level.
|
||||
explicit Confidence(Confidence::Level Level) : CurrentLevel(Level) {}
|
||||
|
||||
/// \brief Lower the internal confidence level to Level, but do not raise it.
|
||||
void lowerTo(Confidence::Level Level) {
|
||||
CurrentLevel = std::min(Level, CurrentLevel);
|
||||
}
|
||||
|
||||
/// \brief Return the internal confidence level.
|
||||
Level getLevel() const { return CurrentLevel; }
|
||||
|
||||
private:
|
||||
Level CurrentLevel;
|
||||
};
|
||||
|
||||
// The main computational result of ForLoopIndexVisitor.
|
||||
typedef llvm::SmallVector<Usage, 8> UsageResult;
|
||||
|
||||
// General functions used by ForLoopIndexUseVisitor and LoopConvertCheck.
|
||||
const Expr *digThroughConstructors(const Expr *E);
|
||||
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second);
|
||||
const DeclRefExpr *getDeclRef(const Expr *E);
|
||||
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second);
|
||||
|
||||
/// \brief Discover usages of expressions consisting of index or iterator
|
||||
/// access.
|
||||
///
|
||||
/// Given an index variable, recursively crawls a for loop to discover if the
|
||||
/// index variable is used in a way consistent with range-based for loop access.
|
||||
class ForLoopIndexUseVisitor
|
||||
: public RecursiveASTVisitor<ForLoopIndexUseVisitor> {
|
||||
public:
|
||||
ForLoopIndexUseVisitor(ASTContext *Context, const VarDecl *IndexVar,
|
||||
const VarDecl *EndVar, const Expr *ContainerExpr,
|
||||
const Expr *ArrayBoundExpr,
|
||||
bool ContainerNeedsDereference);
|
||||
|
||||
/// \brief Finds all uses of IndexVar in Body, placing all usages in Usages,
|
||||
/// and returns true if IndexVar was only used in a way consistent with a
|
||||
/// range-based for loop.
|
||||
///
|
||||
/// The general strategy is to reject any DeclRefExprs referencing IndexVar,
|
||||
/// with the exception of certain acceptable patterns.
|
||||
/// For arrays, the DeclRefExpr for IndexVar must appear as the index of an
|
||||
/// ArraySubscriptExpression. Iterator-based loops may dereference
|
||||
/// IndexVar or call methods through operator-> (builtin or overloaded).
|
||||
/// Array-like containers may use IndexVar as a parameter to the at() member
|
||||
/// function and in overloaded operator[].
|
||||
bool findAndVerifyUsages(const Stmt *Body);
|
||||
|
||||
/// \brief Add a set of components that we should consider relevant to the
|
||||
/// container.
|
||||
void addComponents(const ComponentVector &Components);
|
||||
|
||||
/// \brief Accessor for Usages.
|
||||
const UsageResult &getUsages() const { return Usages; }
|
||||
|
||||
/// \brief Get the container indexed by IndexVar, if any.
|
||||
const Expr *getContainerIndexed() const { return ContainerExpr; }
|
||||
|
||||
/// \brief Returns the statement declaring the variable created as an alias
|
||||
/// for the loop element, if any.
|
||||
const DeclStmt *getAliasDecl() const { return AliasDecl; }
|
||||
|
||||
/// \brief Accessor for ConfidenceLevel.
|
||||
Confidence::Level getConfidenceLevel() const {
|
||||
return ConfidenceLevel.getLevel();
|
||||
}
|
||||
|
||||
/// \brief Indicates if the alias declaration was in a place where it cannot
|
||||
/// simply be removed but rather replaced with a use of the alias variable.
|
||||
/// For example, variables declared in the condition of an if, switch, or for
|
||||
/// stmt.
|
||||
bool aliasUseRequired() const { return ReplaceWithAliasUse; }
|
||||
|
||||
/// \brief Indicates if the alias declaration came from the init clause of a
|
||||
/// nested for loop. SourceRanges provided by Clang for DeclStmts in this
|
||||
/// case need to be adjusted.
|
||||
bool aliasFromForInit() const { return AliasFromForInit; }
|
||||
|
||||
private:
|
||||
/// Typedef used in CRTP functions.
|
||||
typedef RecursiveASTVisitor<ForLoopIndexUseVisitor> VisitorBase;
|
||||
friend class RecursiveASTVisitor<ForLoopIndexUseVisitor>;
|
||||
|
||||
/// Overriden methods for RecursiveASTVisitor's traversal.
|
||||
bool TraverseArraySubscriptExpr(ArraySubscriptExpr *E);
|
||||
bool TraverseCXXMemberCallExpr(CXXMemberCallExpr *MemberCall);
|
||||
bool TraverseCXXOperatorCallExpr(CXXOperatorCallExpr *OpCall);
|
||||
bool TraverseMemberExpr(MemberExpr *Member);
|
||||
bool TraverseUnaryDeref(UnaryOperator *Uop);
|
||||
bool VisitDeclRefExpr(DeclRefExpr *E);
|
||||
bool VisitDeclStmt(DeclStmt *S);
|
||||
bool TraverseStmt(Stmt *S);
|
||||
|
||||
/// \brief Add an expression to the list of expressions on which the container
|
||||
/// expression depends.
|
||||
void addComponent(const Expr *E);
|
||||
|
||||
// Input member variables:
|
||||
ASTContext *Context;
|
||||
/// The index variable's VarDecl.
|
||||
const VarDecl *IndexVar;
|
||||
/// The loop's 'end' variable, which cannot be mentioned at all.
|
||||
const VarDecl *EndVar;
|
||||
/// The Expr which refers to the container.
|
||||
const Expr *ContainerExpr;
|
||||
/// The Expr which refers to the terminating condition for array-based loops.
|
||||
const Expr *ArrayBoundExpr;
|
||||
bool ContainerNeedsDereference;
|
||||
|
||||
// Output member variables:
|
||||
/// A container which holds all usages of IndexVar as the index of
|
||||
/// ArraySubscriptExpressions.
|
||||
UsageResult Usages;
|
||||
bool OnlyUsedAsIndex;
|
||||
/// The DeclStmt for an alias to the container element.
|
||||
const DeclStmt *AliasDecl;
|
||||
Confidence ConfidenceLevel;
|
||||
/// \brief A list of expressions on which ContainerExpr depends.
|
||||
///
|
||||
/// If any of these expressions are encountered outside of an acceptable usage
|
||||
/// of the loop element, lower our confidence level.
|
||||
llvm::SmallVector<std::pair<const Expr *, llvm::FoldingSetNodeID>, 16>
|
||||
DependentExprs;
|
||||
|
||||
/// The parent-in-waiting. Will become the real parent once we traverse down
|
||||
/// one level in the AST.
|
||||
const Stmt *NextStmtParent;
|
||||
/// The actual parent of a node when Visit*() calls are made. Only the
|
||||
/// parentage of DeclStmt's to possible iteration/selection statements is of
|
||||
/// importance.
|
||||
const Stmt *CurrStmtParent;
|
||||
|
||||
/// \see aliasUseRequired().
|
||||
bool ReplaceWithAliasUse;
|
||||
/// \see aliasFromForInit().
|
||||
bool AliasFromForInit;
|
||||
};
|
||||
|
||||
struct TUTrackingInfo {
|
||||
/// \brief Reset and initialize per-TU tracking information.
|
||||
///
|
||||
/// Must be called before using container accessors.
|
||||
TUTrackingInfo() : ParentFinder(new StmtAncestorASTVisitor) {}
|
||||
|
||||
StmtAncestorASTVisitor &getParentFinder() { return *ParentFinder; }
|
||||
StmtGeneratedVarNameMap &getGeneratedDecls() { return GeneratedDecls; }
|
||||
ReplacedVarsMap &getReplacedVars() { return ReplacedVars; }
|
||||
|
||||
private:
|
||||
std::unique_ptr<StmtAncestorASTVisitor> ParentFinder;
|
||||
StmtGeneratedVarNameMap GeneratedDecls;
|
||||
ReplacedVarsMap ReplacedVars;
|
||||
};
|
||||
|
||||
/// \brief Create names for generated variables within a particular statement.
|
||||
///
|
||||
/// VariableNamer uses a DeclContext as a reference point, checking for any
|
||||
/// conflicting declarations higher up in the context or within SourceStmt.
|
||||
/// It creates a variable name using hints from a source container and the old
|
||||
/// index, if they exist.
|
||||
class VariableNamer {
|
||||
public:
|
||||
VariableNamer(StmtGeneratedVarNameMap *GeneratedDecls,
|
||||
const StmtParentMap *ReverseAST, const clang::Stmt *SourceStmt,
|
||||
const clang::VarDecl *OldIndex,
|
||||
const clang::VarDecl *TheContainer,
|
||||
const clang::ASTContext *Context)
|
||||
: GeneratedDecls(GeneratedDecls), ReverseAST(ReverseAST),
|
||||
SourceStmt(SourceStmt), OldIndex(OldIndex), TheContainer(TheContainer),
|
||||
Context(Context) {}
|
||||
|
||||
/// \brief Generate a new index name.
|
||||
///
|
||||
/// Generates the name to be used for an inserted iterator. It relies on
|
||||
/// declarationExists() to determine that there are no naming conflicts, and
|
||||
/// tries to use some hints from the container name and the old index name.
|
||||
std::string createIndexName();
|
||||
|
||||
private:
|
||||
StmtGeneratedVarNameMap *GeneratedDecls;
|
||||
const StmtParentMap *ReverseAST;
|
||||
const clang::Stmt *SourceStmt;
|
||||
const clang::VarDecl *OldIndex;
|
||||
const clang::VarDecl *TheContainer;
|
||||
const clang::ASTContext *Context;
|
||||
|
||||
// Determine whether or not a declaration that would conflict with Symbol
|
||||
// exists in an outer context or in any statement contained in SourceStmt.
|
||||
bool declarationExists(llvm::StringRef Symbol);
|
||||
};
|
||||
|
||||
} // namespace modernize
|
||||
} // namespace tidy
|
||||
} // namespace clang
|
||||
|
||||
#endif // LLVM_CLANG_TOOLS_EXTRA_CLANG_TIDY_MODERNIZE_LOOP_CONVERT_UTILS_H
|
|
@ -10,6 +10,7 @@
|
|||
#include "../ClangTidy.h"
|
||||
#include "../ClangTidyModule.h"
|
||||
#include "../ClangTidyModuleRegistry.h"
|
||||
#include "LoopConvertCheck.h"
|
||||
#include "PassByValueCheck.h"
|
||||
|
||||
using namespace clang::ast_matchers;
|
||||
|
@ -21,12 +22,14 @@ namespace modernize {
|
|||
class ModernizeModule : public ClangTidyModule {
|
||||
public:
|
||||
void addCheckFactories(ClangTidyCheckFactories &CheckFactories) override {
|
||||
CheckFactories.registerCheck<LoopConvertCheck>("modernize-loop-convert");
|
||||
CheckFactories.registerCheck<PassByValueCheck>("modernize-pass-by-value");
|
||||
}
|
||||
|
||||
ClangTidyOptions getModuleOptions() override {
|
||||
ClangTidyOptions Options;
|
||||
auto &Opts = Options.CheckOptions;
|
||||
Opts["modernize-loop-convert.MinConfidence"] = "reasonable";
|
||||
Opts["modernize-pass-by-value.IncludeStyle"] = "llvm"; // Also: "google".
|
||||
return Options;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,179 @@
|
|||
#ifndef STRUCTURES_H
|
||||
#define STRUCTURES_H
|
||||
|
||||
extern "C" {
|
||||
extern int printf(const char *restrict, ...);
|
||||
}
|
||||
|
||||
struct Val {int x; void g(); };
|
||||
|
||||
struct MutableVal {
|
||||
void constFun(int) const;
|
||||
void nonConstFun(int, int);
|
||||
void constFun(MutableVal &) const;
|
||||
void constParamFun(const MutableVal &) const;
|
||||
void nonConstParamFun(const MutableVal &);
|
||||
int x;
|
||||
};
|
||||
|
||||
struct S {
|
||||
typedef MutableVal *iterator;
|
||||
typedef const MutableVal *const_iterator;
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
iterator begin();
|
||||
iterator end();
|
||||
};
|
||||
|
||||
struct T {
|
||||
struct iterator {
|
||||
int& operator*();
|
||||
const int& operator*()const;
|
||||
iterator& operator ++();
|
||||
bool operator!=(const iterator &other);
|
||||
void insert(int);
|
||||
int x;
|
||||
};
|
||||
iterator begin();
|
||||
iterator end();
|
||||
};
|
||||
|
||||
struct U {
|
||||
struct iterator {
|
||||
Val& operator*();
|
||||
const Val& operator*()const;
|
||||
iterator& operator ++();
|
||||
bool operator!=(const iterator &other);
|
||||
Val *operator->();
|
||||
};
|
||||
iterator begin();
|
||||
iterator end();
|
||||
int x;
|
||||
};
|
||||
|
||||
struct X {
|
||||
S s;
|
||||
T t;
|
||||
U u;
|
||||
S getS();
|
||||
};
|
||||
|
||||
template<typename ElemType>
|
||||
class dependent{
|
||||
public:
|
||||
struct iterator_base {
|
||||
const ElemType& operator*()const;
|
||||
iterator_base& operator ++();
|
||||
bool operator!=(const iterator_base &other) const;
|
||||
const ElemType *operator->() const;
|
||||
};
|
||||
|
||||
struct iterator : iterator_base {
|
||||
ElemType& operator*();
|
||||
iterator& operator ++();
|
||||
ElemType *operator->();
|
||||
};
|
||||
|
||||
typedef iterator_base const_iterator;
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
iterator begin();
|
||||
iterator end();
|
||||
unsigned size() const;
|
||||
ElemType & operator[](unsigned);
|
||||
const ElemType & operator[](unsigned) const;
|
||||
ElemType & at(unsigned);
|
||||
const ElemType & at(unsigned) const;
|
||||
|
||||
// Intentionally evil.
|
||||
dependent<ElemType> operator*();
|
||||
|
||||
void foo();
|
||||
void constFoo() const;
|
||||
};
|
||||
|
||||
template<typename First, typename Second>
|
||||
class doublyDependent{
|
||||
public:
|
||||
struct Value {
|
||||
First first;
|
||||
Second second;
|
||||
};
|
||||
|
||||
struct iterator_base {
|
||||
const Value& operator*()const;
|
||||
iterator_base& operator ++();
|
||||
bool operator!=(const iterator_base &other) const;
|
||||
const Value *operator->() const;
|
||||
};
|
||||
|
||||
struct iterator : iterator_base {
|
||||
Value& operator*();
|
||||
Value& operator ++();
|
||||
Value *operator->();
|
||||
};
|
||||
|
||||
typedef iterator_base const_iterator;
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
iterator begin();
|
||||
iterator end();
|
||||
};
|
||||
|
||||
template<typename Contained>
|
||||
class transparent {
|
||||
public:
|
||||
Contained *at();
|
||||
Contained *operator->();
|
||||
Contained operator*();
|
||||
};
|
||||
|
||||
template<typename IteratorType>
|
||||
struct Nested {
|
||||
typedef IteratorType* iterator;
|
||||
typedef const IteratorType* const_iterator;
|
||||
IteratorType *operator->();
|
||||
IteratorType operator*();
|
||||
iterator begin();
|
||||
iterator end();
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
};
|
||||
|
||||
// Like llvm::SmallPtrSet, the iterator has a dereference operator that returns
|
||||
// by value instead of by reference.
|
||||
template <typename T>
|
||||
struct PtrSet {
|
||||
struct iterator {
|
||||
bool operator!=(const iterator &other) const;
|
||||
const T operator*();
|
||||
iterator &operator++();
|
||||
};
|
||||
iterator begin() const;
|
||||
iterator end() const;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypedefDerefContainer {
|
||||
struct iterator {
|
||||
typedef T &deref_type;
|
||||
bool operator!=(const iterator &other) const;
|
||||
deref_type operator*();
|
||||
iterator &operator++();
|
||||
};
|
||||
iterator begin() const;
|
||||
iterator end() const;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct RValueDerefContainer {
|
||||
struct iterator {
|
||||
typedef T &&deref_type;
|
||||
bool operator!=(const iterator &other) const;
|
||||
deref_type operator*();
|
||||
iterator &operator++();
|
||||
};
|
||||
iterator begin() const;
|
||||
iterator end() const;
|
||||
};
|
||||
#endif // STRUCTURES_H
|
|
@ -0,0 +1,548 @@
|
|||
// RUN: $(dirname %s)/check_clang_tidy.sh %s modernize-loop-convert %t -- -std=c++11 -I %S/Inputs/modernize-loop-convert
|
||||
// REQUIRES: shell
|
||||
|
||||
#include "structures.h"
|
||||
|
||||
namespace Array {
|
||||
|
||||
const int N = 6;
|
||||
const int NMinusOne = N - 1;
|
||||
int arr[N] = {1, 2, 3, 4, 5, 6};
|
||||
int (*pArr)[N] = &arr;
|
||||
|
||||
void f() {
|
||||
int sum = 0;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
sum += arr[i];
|
||||
int k;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead [modernize-loop-convert]
|
||||
// CHECK-FIXES: for (auto & elem : arr) {
|
||||
// CHECK-FIXES-NEXT: sum += elem;
|
||||
// CHECK-FIXES-NEXT: int k;
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("Fibonacci number is %d\n", arr[i]);
|
||||
sum += arr[i] + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
int x = arr[i];
|
||||
int y = arr[i] + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: int x = elem;
|
||||
// CHECK-FIXES-NEXT: int y = elem + 2;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
int x = N;
|
||||
x = arr[i];
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: int x = N;
|
||||
// CHECK-FIXES-NEXT: x = elem;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
arr[i] += 1;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr) {
|
||||
// CHECK-FIXES-NEXT: elem += 1;
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
int x = arr[i] + 2;
|
||||
arr[i]++;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: int x = elem + 2;
|
||||
// CHECK-FIXES-NEXT: elem++;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
arr[i] = 4 + arr[i];
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: elem = 4 + elem;
|
||||
|
||||
for (int i = 0; i < NMinusOne + 1; ++i) {
|
||||
sum += arr[i];
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr) {
|
||||
// CHECK-FIXES-NEXT: sum += elem;
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("Fibonacci number %d has address %p\n", arr[i], &arr[i]);
|
||||
sum += arr[i] + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number %d has address %p\n", elem, &elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
Val teas[N];
|
||||
for (int i = 0; i < N; ++i) {
|
||||
teas[i].g();
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & tea : teas) {
|
||||
// CHECK-FIXES-NEXT: tea.g();
|
||||
// CHECK-FIXES-NEXT: }
|
||||
}
|
||||
|
||||
struct HasArr {
|
||||
int Arr[N];
|
||||
Val ValArr[N];
|
||||
void implicitThis() {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", Arr[i]);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Arr) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", elem);
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", ValArr[i].x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : ValArr) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", elem.x);
|
||||
// CHECK-FIXES-NEXT: }
|
||||
}
|
||||
|
||||
void explicitThis() {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", this->Arr[i]);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : this->Arr) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", elem);
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", this->ValArr[i].x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : this->ValArr) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", elem.x);
|
||||
// CHECK-FIXES-NEXT: }
|
||||
}
|
||||
};
|
||||
|
||||
// Loops whose bounds are value-dependent shold not be converted.
|
||||
template <int N>
|
||||
void dependentExprBound() {
|
||||
for (int i = 0; i < N; ++i)
|
||||
arr[i] = 0;
|
||||
}
|
||||
template void dependentExprBound<20>();
|
||||
|
||||
void memberFunctionPointer() {
|
||||
Val v;
|
||||
void (Val::*mfpArr[N])(void) = {&Val::g};
|
||||
for (int i = 0; i < N; ++i)
|
||||
(v.*mfpArr[i])();
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : mfpArr)
|
||||
// CHECK-FIXES-NEXT: (v.*elem)();
|
||||
}
|
||||
|
||||
} // namespace Array
|
||||
|
||||
namespace Iterator {
|
||||
|
||||
void f() {
|
||||
/// begin()/end() - based for loops here:
|
||||
T t;
|
||||
for (T::iterator it = t.begin(), e = t.end(); it != e; ++it) {
|
||||
printf("I found %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : t)
|
||||
// CHECK-FIXES-NEXT: printf("I found %d\n", elem);
|
||||
|
||||
T *pt;
|
||||
for (T::iterator it = pt->begin(), e = pt->end(); it != e; ++it) {
|
||||
printf("I found %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *pt)
|
||||
// CHECK-FIXES-NEXT: printf("I found %d\n", elem);
|
||||
|
||||
S s;
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
S *ps;
|
||||
for (S::iterator it = ps->begin(), e = ps->end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & p : *ps)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (p).x);
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", it->x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", elem.x);
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
it->x = 3;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: elem.x = 3;
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
(*it).x = 3;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: (elem).x = 3;
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
it->nonConstFun(4, 5);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: elem.nonConstFun(4, 5);
|
||||
|
||||
U u;
|
||||
for (U::iterator it = u.begin(), e = u.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", it->x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", elem.x);
|
||||
|
||||
for (U::iterator it = u.begin(), e = u.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
U::iterator A;
|
||||
for (U::iterator i = u.begin(), e = u.end(); i != e; ++i)
|
||||
int k = A->x + i->x;
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: int k = A->x + elem.x;
|
||||
|
||||
dependent<int> v;
|
||||
for (dependent<int>::iterator it = v.begin(), e = v.end();
|
||||
it != e; ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
|
||||
for (dependent<int>::iterator it(v.begin()), e = v.end();
|
||||
it != e; ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
|
||||
doublyDependent<int, int> intmap;
|
||||
for (doublyDependent<int, int>::iterator it = intmap.begin(), e = intmap.end();
|
||||
it != e; ++it) {
|
||||
printf("intmap[%d] = %d", it->first, it->second);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : intmap)
|
||||
// CHECK-FIXES: printf("intmap[%d] = %d", elem.first, elem.second);
|
||||
|
||||
// PtrSet's iterator dereferences by value so auto & can't be used.
|
||||
{
|
||||
PtrSet<int *> int_ptrs;
|
||||
for (PtrSet<int *>::iterator I = int_ptrs.begin(),
|
||||
E = int_ptrs.end();
|
||||
I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto && int_ptr : int_ptrs) {
|
||||
}
|
||||
|
||||
// This container uses an iterator where the derefence type is a typedef of
|
||||
// a reference type. Make sure non-const auto & is still used. A failure here
|
||||
// means canonical types aren't being tested.
|
||||
{
|
||||
TypedefDerefContainer<int> int_ptrs;
|
||||
for (TypedefDerefContainer<int>::iterator I = int_ptrs.begin(),
|
||||
E = int_ptrs.end();
|
||||
I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & int_ptr : int_ptrs) {
|
||||
}
|
||||
|
||||
{
|
||||
// Iterators returning an rvalue reference should disqualify the loop from
|
||||
// transformation.
|
||||
RValueDerefContainer<int> container;
|
||||
for (RValueDerefContainer<int>::iterator I = container.begin(),
|
||||
E = container.end();
|
||||
I != E; ++I) {
|
||||
}
|
||||
// CHECK-FIXES: for (RValueDerefContainer<int>::iterator I = container.begin(),
|
||||
// CHECK-FIXES-NEXT: E = container.end();
|
||||
// CHECK-FIXES-NEXT: I != E; ++I) {
|
||||
}
|
||||
}
|
||||
|
||||
// Tests to verify the proper use of auto where the init variable type and the
|
||||
// initializer type differ or are mostly the same except for const qualifiers.
|
||||
void different_type() {
|
||||
// s.begin() returns a type 'iterator' which is just a non-const pointer and
|
||||
// differs from const_iterator only on the const qualification.
|
||||
S s;
|
||||
for (S::const_iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
S *ps;
|
||||
for (S::const_iterator it = ps->begin(), e = ps->end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & p : *ps)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (p).x);
|
||||
|
||||
// v.begin() returns a user-defined type 'iterator' which, since it's
|
||||
// different from const_iterator, disqualifies these loops from
|
||||
// transformation.
|
||||
dependent<int> v;
|
||||
for (dependent<int>::const_iterator it = v.begin(), e = v.end();
|
||||
it != e; ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-FIXES: for (dependent<int>::const_iterator it = v.begin(), e = v.end();
|
||||
// CHECK-FIXES-NEXT: it != e; ++it) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", *it);
|
||||
|
||||
for (dependent<int>::const_iterator it(v.begin()), e = v.end();
|
||||
it != e; ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-FIXES: for (dependent<int>::const_iterator it(v.begin()), e = v.end();
|
||||
// CHECK-FIXES-NEXT: it != e; ++it) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
|
||||
// Tests to ensure that an implicit 'this' is picked up as the container.
|
||||
// If member calls are made to 'this' within the loop, the transform becomes
|
||||
// risky as these calls may affect state that affects the loop.
|
||||
class C {
|
||||
public:
|
||||
typedef MutableVal *iterator;
|
||||
typedef const MutableVal *const_iterator;
|
||||
|
||||
iterator begin();
|
||||
iterator end();
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
|
||||
void doSomething();
|
||||
void doSomething() const;
|
||||
|
||||
void doLoop() {
|
||||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
|
||||
for (iterator I = C::begin(), E = C::end(); I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
|
||||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||||
doSomething();
|
||||
}
|
||||
|
||||
for (iterator I = begin(); I != end(); ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
|
||||
for (iterator I = begin(); I != end(); ++I) {
|
||||
doSomething();
|
||||
}
|
||||
}
|
||||
|
||||
void doLoop() const {
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
|
||||
for (const_iterator I = C::begin(), E = C::end(); I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
doSomething();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class C2 {
|
||||
public:
|
||||
typedef MutableVal *iterator;
|
||||
|
||||
iterator begin() const;
|
||||
iterator end() const;
|
||||
|
||||
void doLoop() {
|
||||
// The implicit 'this' will have an Implicit cast to const C2* wrapped
|
||||
// around it. Make sure the replacement still happens.
|
||||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *this) {
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace Iterator
|
||||
|
||||
namespace PseudoArray {
|
||||
|
||||
const int N = 6;
|
||||
dependent<int> v;
|
||||
dependent<int> *pv;
|
||||
|
||||
transparent<dependent<int>> cv;
|
||||
|
||||
void f() {
|
||||
int sum = 0;
|
||||
for (int i = 0, e = v.size(); i < e; ++i) {
|
||||
printf("Fibonacci number is %d\n", v[i]);
|
||||
sum += v[i] + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
for (int i = 0, e = v.size(); i < e; ++i) {
|
||||
printf("Fibonacci number is %d\n", v.at(i));
|
||||
sum += v.at(i) + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
for (int i = 0, e = pv->size(); i < e; ++i) {
|
||||
printf("Fibonacci number is %d\n", pv->at(i));
|
||||
sum += pv->at(i) + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *pv)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
// This test will fail if size() isn't called repeatedly, since it
|
||||
// returns unsigned int, and 0 is deduced to be signed int.
|
||||
// FIXME: Insert the necessary explicit conversion, or write out the types
|
||||
// explicitly.
|
||||
for (int i = 0; i < pv->size(); ++i) {
|
||||
printf("Fibonacci number is %d\n", (*pv).at(i));
|
||||
sum += (*pv)[i] + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *pv)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
|
||||
for (int i = 0; i < cv->size(); ++i) {
|
||||
printf("Fibonacci number is %d\n", cv->at(i));
|
||||
sum += cv->at(i) + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *cv)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
// CHECK-FIXES-NEXT: sum += elem + 2;
|
||||
}
|
||||
|
||||
// Check for loops that don't mention containers.
|
||||
void noContainer() {
|
||||
for (auto i = 0; i < v.size(); ++i) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v) {
|
||||
|
||||
for (auto i = 0; i < v.size(); ++i)
|
||||
;
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v)
|
||||
}
|
||||
|
||||
struct NoBeginEnd {
|
||||
unsigned size() const;
|
||||
};
|
||||
|
||||
struct NoConstBeginEnd {
|
||||
NoConstBeginEnd();
|
||||
unsigned size() const;
|
||||
unsigned begin();
|
||||
unsigned end();
|
||||
};
|
||||
|
||||
struct ConstBeginEnd {
|
||||
ConstBeginEnd();
|
||||
unsigned size() const;
|
||||
unsigned begin() const;
|
||||
unsigned end() const;
|
||||
};
|
||||
|
||||
// Shouldn't transform pseudo-array uses if the container doesn't provide
|
||||
// begin() and end() of the right const-ness.
|
||||
void NoBeginEndTest() {
|
||||
NoBeginEnd NBE;
|
||||
for (unsigned i = 0, e = NBE.size(); i < e; ++i) {
|
||||
}
|
||||
|
||||
const NoConstBeginEnd const_NCBE;
|
||||
for (unsigned i = 0, e = const_NCBE.size(); i < e; ++i) {
|
||||
}
|
||||
|
||||
ConstBeginEnd CBE;
|
||||
for (unsigned i = 0, e = CBE.size(); i < e; ++i) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : CBE) {
|
||||
|
||||
const ConstBeginEnd const_CBE;
|
||||
for (unsigned i = 0, e = const_CBE.size(); i < e; ++i) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : const_CBE) {
|
||||
}
|
||||
|
||||
} // namespace PseudoArray
|
|
@ -0,0 +1,608 @@
|
|||
// RUN: $(dirname %s)/check_clang_tidy.sh %s modernize-loop-convert %t -- -std=c++11 -I %S/Inputs/modernize-loop-convert
|
||||
// REQUIRES: shell
|
||||
|
||||
#include "structures.h"
|
||||
|
||||
namespace Dependency {
|
||||
|
||||
void f() {
|
||||
const int N = 6;
|
||||
const int M = 8;
|
||||
int arr[N][M];
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
int a = 0;
|
||||
int b = arr[i][a];
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : arr) {
|
||||
// CHECK-FIXES-NEXT: int a = 0;
|
||||
// CHECK-FIXES-NEXT: int b = elem[a];
|
||||
// CHECK-FIXES-NEXT: }
|
||||
|
||||
for (int j = 0; j < M; ++j) {
|
||||
int a = 0;
|
||||
int b = arr[a][j];
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Dependency
|
||||
|
||||
namespace NamingAlias {
|
||||
|
||||
const int N = 10;
|
||||
|
||||
Val Arr[N];
|
||||
dependent<Val> v;
|
||||
dependent<Val> *pv;
|
||||
Val &func(Val &);
|
||||
void sideEffect(int);
|
||||
|
||||
void aliasing() {
|
||||
// If the loop container is only used for a declaration of a temporary
|
||||
// variable to hold each element, we can name the new variable for the
|
||||
// converted range-based loop as the temporary variable's name.
|
||||
|
||||
// In the following case, "t" is used as a temporary variable to hold each
|
||||
// element, and thus we consider the name "t" aliased to the loop.
|
||||
// The extra blank braces are left as a placeholder for after the variable
|
||||
// declaration is deleted.
|
||||
for (int i = 0; i < N; ++i) {
|
||||
Val &t = Arr[i];
|
||||
{}
|
||||
int y = t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & t : Arr)
|
||||
// CHECK-FIXES-NOT: Val &{{[a-z_]+}} =
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
|
||||
// The container was not only used to initialize a temporary loop variable for
|
||||
// the container's elements, so we do not alias the new loop variable.
|
||||
for (int i = 0; i < N; ++i) {
|
||||
Val &t = Arr[i];
|
||||
int y = t.x;
|
||||
int z = Arr[i].x + t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Arr)
|
||||
// CHECK-FIXES-NEXT: Val &t = elem;
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
// CHECK-FIXES-NEXT: int z = elem.x + t.x;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
Val t = Arr[i];
|
||||
int y = t.x;
|
||||
int z = Arr[i].x + t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Arr)
|
||||
// CHECK-FIXES-NEXT: Val t = elem;
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
// CHECK-FIXES-NEXT: int z = elem.x + t.x;
|
||||
|
||||
// The same for pseudo-arrays like std::vector<T> (or here dependent<Val>)
|
||||
// which provide a subscript operator[].
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
Val &t = v[i];
|
||||
{}
|
||||
int y = t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & t : v)
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
|
||||
// The same with a call to at()
|
||||
for (int i = 0; i < pv->size(); ++i) {
|
||||
Val &t = pv->at(i);
|
||||
{}
|
||||
int y = t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & t : *pv)
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
Val &t = func(Arr[i]);
|
||||
int y = t.x;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Arr)
|
||||
// CHECK-FIXES-NEXT: Val &t = func(elem);
|
||||
// CHECK-FIXES-NEXT: int y = t.x;
|
||||
|
||||
int IntArr[N];
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
if (int alias = IntArr[i]) {
|
||||
sideEffect(alias);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : IntArr)
|
||||
// CHECK-FIXES-NEXT: if (alias) {
|
||||
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
while (int alias = IntArr[i]) {
|
||||
sideEffect(alias);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : IntArr)
|
||||
// CHECK-FIXES-NEXT: while (alias) {
|
||||
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
switch (int alias = IntArr[i]) {
|
||||
default:
|
||||
sideEffect(alias);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-6]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : IntArr)
|
||||
// CHECK-FIXES-NEXT: switch (alias) {
|
||||
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
for (int alias = IntArr[i]; alias < N; ++alias) {
|
||||
sideEffect(alias);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : IntArr)
|
||||
// CHECK-FIXES-NEXT: for (; alias < N; ++alias) {
|
||||
|
||||
for (unsigned i = 0; i < N; ++i) {
|
||||
for (unsigned j = 0; int alias = IntArr[i]; ++j) {
|
||||
sideEffect(alias);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : IntArr)
|
||||
// CHECK-FIXES-NEXT: for (unsigned j = 0; alias; ++j) {
|
||||
}
|
||||
|
||||
void refs_and_vals() {
|
||||
// The following tests check that the transform correctly preserves the
|
||||
// reference or value qualifiers of the aliased variable. That is, if the
|
||||
// variable was declared as a value, the loop variable will be declared as a
|
||||
// value and vice versa for references.
|
||||
|
||||
S s;
|
||||
const S s_const = s;
|
||||
|
||||
for (S::const_iterator it = s_const.begin(); it != s_const.end(); ++it) {
|
||||
MutableVal alias = *it;
|
||||
{}
|
||||
alias.x = 0;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : s_const)
|
||||
// CHECK-FIXES-NOT: MutableVal {{[a-z_]+}} =
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: alias.x = 0;
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
MutableVal alias = *it;
|
||||
{}
|
||||
alias.x = 0;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto alias : s)
|
||||
// CHECK-FIXES-NOT: MutableVal {{[a-z_]+}} =
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: alias.x = 0;
|
||||
|
||||
for (S::iterator it = s.begin(), e = s.end(); it != e; ++it) {
|
||||
MutableVal &alias = *it;
|
||||
{}
|
||||
alias.x = 0;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & alias : s)
|
||||
// CHECK-FIXES-NOT: MutableVal &{{[a-z_]+}} =
|
||||
// CHECK-FIXES: {}
|
||||
// CHECK-FIXES-NEXT: alias.x = 0;
|
||||
}
|
||||
|
||||
} // namespace NamingAlias
|
||||
|
||||
namespace NamingConlict {
|
||||
|
||||
#define MAX(a, b) (a > b) ? a : b
|
||||
#define DEF 5
|
||||
|
||||
const int N = 10;
|
||||
int nums[N];
|
||||
int sum = 0;
|
||||
|
||||
namespace ns {
|
||||
struct st {
|
||||
int x;
|
||||
};
|
||||
}
|
||||
|
||||
void sameNames() {
|
||||
int num = 0;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("Fibonacci number is %d\n", nums[i]);
|
||||
sum += nums[i] + 2 + num;
|
||||
(void)nums[i];
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & nums_i : nums)
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", nums_i);
|
||||
// CHECK-FIXES-NEXT: sum += nums_i + 2 + num;
|
||||
// CHECK-FIXES-NOT: (void) num;
|
||||
}
|
||||
|
||||
void macroConflict() {
|
||||
S MAXs;
|
||||
for (S::iterator it = MAXs.begin(), e = MAXs.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
printf("Max of 3 and 5: %d\n", MAX(3, 5));
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & MAXs_it : MAXs)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (MAXs_it).x);
|
||||
// CHECK-FIXES-NEXT: printf("Max of 3 and 5: %d\n", MAX(3, 5));
|
||||
|
||||
for (S::const_iterator it = MAXs.begin(), e = MAXs.end(); it != e; ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
printf("Max of 3 and 5: %d\n", MAX(3, 5));
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & MAXs_it : MAXs)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (MAXs_it).x);
|
||||
// CHECK-FIXES-NEXT: printf("Max of 3 and 5: %d\n", MAX(3, 5));
|
||||
|
||||
T DEFs;
|
||||
for (T::iterator it = DEFs.begin(), e = DEFs.end(); it != e; ++it) {
|
||||
if (*it == DEF) {
|
||||
printf("I found %d\n", *it);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & DEFs_it : DEFs)
|
||||
// CHECK-FIXES-NEXT: if (DEFs_it == DEF) {
|
||||
// CHECK-FIXES-NEXT: printf("I found %d\n", DEFs_it);
|
||||
}
|
||||
|
||||
void keywordConflict() {
|
||||
T ints;
|
||||
for (T::iterator it = ints.begin(), e = ints.end(); it != e; ++it) {
|
||||
*it = 5;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & ints_it : ints)
|
||||
// CHECK-FIXES-NEXT: ints_it = 5;
|
||||
|
||||
U __FUNCTION__s;
|
||||
for (U::iterator it = __FUNCTION__s.begin(), e = __FUNCTION__s.end();
|
||||
it != e; ++it) {
|
||||
int __FUNCTION__s_it = (*it).x + 2;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & __FUNCTION__s_elem : __FUNCTION__s)
|
||||
// CHECK-FIXES-NEXT: int __FUNCTION__s_it = (__FUNCTION__s_elem).x + 2;
|
||||
}
|
||||
|
||||
void typeConflict() {
|
||||
T Vals;
|
||||
// Using the name "Val", although it is the name of an existing struct, is
|
||||
// safe in this loop since it will only exist within this scope.
|
||||
for (T::iterator it = Vals.begin(), e = Vals.end(); it != e; ++it) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & Val : Vals)
|
||||
|
||||
// We cannot use the name "Val" in this loop since there is a reference to
|
||||
// it in the body of the loop.
|
||||
for (T::iterator it = Vals.begin(), e = Vals.end(); it != e; ++it) {
|
||||
*it = sizeof(Val);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & Vals_it : Vals)
|
||||
// CHECK-FIXES-NEXT: Vals_it = sizeof(Val);
|
||||
|
||||
typedef struct Val TD;
|
||||
U TDs;
|
||||
// Naming the variable "TD" within this loop is safe because the typedef
|
||||
// was never used within the loop.
|
||||
for (U::iterator it = TDs.begin(), e = TDs.end(); it != e; ++it) {
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & TD : TDs)
|
||||
|
||||
// "TD" cannot be used in this loop since the typedef is being used.
|
||||
for (U::iterator it = TDs.begin(), e = TDs.end(); it != e; ++it) {
|
||||
TD V;
|
||||
V.x = 5;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & TDs_it : TDs)
|
||||
// CHECK-FIXES-NEXT: TD V;
|
||||
// CHECK-FIXES-NEXT: V.x = 5;
|
||||
|
||||
using ns::st;
|
||||
T sts;
|
||||
for (T::iterator it = sts.begin(), e = sts.end(); it != e; ++it) {
|
||||
*it = sizeof(st);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & sts_it : sts)
|
||||
// CHECK-FIXES-NEXT: sts_it = sizeof(st);
|
||||
}
|
||||
|
||||
} // namespace NamingConflict
|
||||
|
||||
namespace FreeBeginEnd {
|
||||
|
||||
// FIXME: Loop Convert should detect free begin()/end() functions.
|
||||
|
||||
struct MyArray {
|
||||
unsigned size();
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct MyContainer {
|
||||
};
|
||||
|
||||
int *begin(const MyArray &Arr);
|
||||
int *end(const MyArray &Arr);
|
||||
|
||||
template <typename T>
|
||||
T *begin(const MyContainer<T> &C);
|
||||
template <typename T>
|
||||
T *end(const MyContainer<T> &C);
|
||||
|
||||
// The Loop Convert Transform doesn't detect free functions begin()/end() and
|
||||
// so fails to transform these cases which it should.
|
||||
void f() {
|
||||
MyArray Arr;
|
||||
for (unsigned i = 0, e = Arr.size(); i < e; ++i) {
|
||||
}
|
||||
|
||||
MyContainer<int> C;
|
||||
for (int *I = begin(C), *E = end(C); I != E; ++I) {
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace FreeBeginEnd
|
||||
|
||||
namespace Nesting {
|
||||
|
||||
void f() {
|
||||
const int N = 10;
|
||||
const int M = 15;
|
||||
Val Arr[N];
|
||||
for (int i = 0; i < N; ++i) {
|
||||
for (int j = 0; j < N; ++j) {
|
||||
int k = Arr[i].x + Arr[j].x;
|
||||
// The repeat is there to allow FileCheck to make sure the two variable
|
||||
// names aren't the same.
|
||||
int l = Arr[i].x + Arr[j].x;
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-8]]:3: warning: use range-based for loop instead
|
||||
// CHECK-MESSAGES: :[[@LINE-8]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Arr)
|
||||
// CHECK-FIXES-NEXT: for (auto & Arr_j : Arr)
|
||||
// CHECK-FIXES-NEXT: int k = elem.x + Arr_j.x;
|
||||
// CHECK-FIXES-NOT: int l = elem.x + elem.x;
|
||||
|
||||
// The inner loop is also convertible, but doesn't need to be converted
|
||||
// immediately. FIXME: update this test when that changes.
|
||||
Val Nest[N][M];
|
||||
for (int i = 0; i < N; ++i) {
|
||||
for (int j = 0; j < M; ++j) {
|
||||
printf("Got item %d", Nest[i][j].x);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : Nest)
|
||||
// CHECK-FIXES-NEXT: for (int j = 0; j < M; ++j)
|
||||
// CHECK-FIXES-NEXT: printf("Got item %d", elem[j].x);
|
||||
|
||||
// Note that the order of M and N are switched for this test.
|
||||
for (int j = 0; j < M; ++j) {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("Got item %d", Nest[i][j].x);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:5: warning: use range-based for loop instead
|
||||
// CHECK-FIXES-NOT: for (auto & {{[a-zA-Z_]+}} : Nest[i])
|
||||
// CHECK-FIXES: for (int j = 0; j < M; ++j)
|
||||
// CHECK-FIXES-NEXT: for (auto & elem : Nest)
|
||||
// CHECK-FIXES-NEXT: printf("Got item %d", elem[j].x);
|
||||
|
||||
// The inner loop is also convertible.
|
||||
Nested<T> NestT;
|
||||
for (Nested<T>::iterator I = NestT.begin(), E = NestT.end(); I != E; ++I) {
|
||||
for (T::iterator TI = (*I).begin(), TE = (*I).end(); TI != TE; ++TI) {
|
||||
printf("%d", *TI);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : NestT) {
|
||||
// CHECK-FIXES-NEXT: for (T::iterator TI = (elem).begin(), TE = (elem).end(); TI != TE; ++TI) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", *TI);
|
||||
|
||||
// The inner loop is also convertible.
|
||||
Nested<S> NestS;
|
||||
for (Nested<S>::const_iterator I = NestS.begin(), E = NestS.end(); I != E; ++I) {
|
||||
for (S::const_iterator SI = (*I).begin(), SE = (*I).end(); SI != SE; ++SI) {
|
||||
printf("%d", *SI);
|
||||
}
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-5]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & elem : NestS) {
|
||||
// CHECK-FIXES-NEXT: for (S::const_iterator SI = (elem).begin(), SE = (elem).end(); SI != SE; ++SI) {
|
||||
// CHECK-FIXES-NEXT: printf("%d", *SI);
|
||||
}
|
||||
|
||||
} // namespace Nesting
|
||||
|
||||
namespace SingleIterator {
|
||||
|
||||
void complexContainer() {
|
||||
X exes[5];
|
||||
int index = 0;
|
||||
|
||||
for (S::iterator i = exes[index].getS().begin(), e = exes[index].getS().end(); i != e; ++i) {
|
||||
MutableVal k = *i;
|
||||
MutableVal j = *i;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : exes[index].getS())
|
||||
// CHECK-FIXES-NEXT: MutableVal k = elem;
|
||||
// CHECK-FIXES-NEXT: MutableVal j = elem;
|
||||
}
|
||||
|
||||
void f() {
|
||||
/// begin()/end() - based for loops here:
|
||||
T t;
|
||||
for (T::iterator it = t.begin(); it != t.end(); ++it) {
|
||||
printf("I found %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : t)
|
||||
// CHECK-FIXES-NEXT: printf("I found %d\n", elem);
|
||||
|
||||
T *pt;
|
||||
for (T::iterator it = pt->begin(); it != pt->end(); ++it) {
|
||||
printf("I found %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : *pt)
|
||||
// CHECK-FIXES-NEXT: printf("I found %d\n", elem);
|
||||
|
||||
S s;
|
||||
for (S::iterator it = s.begin(); it != s.end(); ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
S *ps;
|
||||
for (S::iterator it = ps->begin(); it != ps->end(); ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & p : *ps)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (p).x);
|
||||
|
||||
for (S::iterator it = s.begin(); it != s.end(); ++it) {
|
||||
printf("s has value %d\n", it->x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", elem.x);
|
||||
|
||||
for (S::iterator it = s.begin(); it != s.end(); ++it) {
|
||||
it->x = 3;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: elem.x = 3;
|
||||
|
||||
for (S::iterator it = s.begin(); it != s.end(); ++it) {
|
||||
(*it).x = 3;
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: (elem).x = 3;
|
||||
|
||||
for (S::iterator it = s.begin(); it != s.end(); ++it) {
|
||||
it->nonConstFun(4, 5);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: elem.nonConstFun(4, 5);
|
||||
|
||||
U u;
|
||||
for (U::iterator it = u.begin(); it != u.end(); ++it) {
|
||||
printf("s has value %d\n", it->x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", elem.x);
|
||||
|
||||
for (U::iterator it = u.begin(); it != u.end(); ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
U::iterator A;
|
||||
for (U::iterator i = u.begin(); i != u.end(); ++i)
|
||||
int k = A->x + i->x;
|
||||
// CHECK-MESSAGES: :[[@LINE-2]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : u)
|
||||
// CHECK-FIXES-NEXT: int k = A->x + elem.x;
|
||||
|
||||
dependent<int> v;
|
||||
for (dependent<int>::iterator it = v.begin();
|
||||
it != v.end(); ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
|
||||
for (dependent<int>::iterator it(v.begin());
|
||||
it != v.end(); ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : v) {
|
||||
// CHECK-FIXES-NEXT: printf("Fibonacci number is %d\n", elem);
|
||||
|
||||
doublyDependent<int, int> intmap;
|
||||
for (doublyDependent<int, int>::iterator it = intmap.begin();
|
||||
it != intmap.end(); ++it) {
|
||||
printf("intmap[%d] = %d", it->first, it->second);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-4]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (auto & elem : intmap)
|
||||
// CHECK-FIXES-NEXT: printf("intmap[%d] = %d", elem.first, elem.second);
|
||||
}
|
||||
|
||||
void different_type() {
|
||||
// Tests to verify the proper use of auto where the init variable type and the
|
||||
// initializer type differ or are mostly the same except for const qualifiers.
|
||||
|
||||
// s.begin() returns a type 'iterator' which is just a non-const pointer and
|
||||
// differs from const_iterator only on the const qualification.
|
||||
S s;
|
||||
for (S::const_iterator it = s.begin(); it != s.end(); ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & elem : s)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (elem).x);
|
||||
|
||||
S *ps;
|
||||
for (S::const_iterator it = ps->begin(); it != ps->end(); ++it) {
|
||||
printf("s has value %d\n", (*it).x);
|
||||
}
|
||||
// CHECK-MESSAGES: :[[@LINE-3]]:3: warning: use range-based for loop instead
|
||||
// CHECK-FIXES: for (const auto & p : *ps)
|
||||
// CHECK-FIXES-NEXT: printf("s has value %d\n", (p).x);
|
||||
|
||||
// v.begin() returns a user-defined type 'iterator' which, since it's
|
||||
// different from const_iterator, disqualifies these loops from
|
||||
// transformation.
|
||||
dependent<int> v;
|
||||
for (dependent<int>::const_iterator it = v.begin(); it != v.end(); ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
|
||||
for (dependent<int>::const_iterator it(v.begin()); it != v.end(); ++it) {
|
||||
printf("Fibonacci number is %d\n", *it);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -0,0 +1,459 @@
|
|||
// RUN: $(dirname %s)/check_clang_tidy.sh %s modernize-loop-convert %t -- -std=c++11 -I %S/Inputs/modernize-loop-convert
|
||||
// REQUIRES: shell
|
||||
|
||||
#include "structures.h"
|
||||
|
||||
// CHECK-FIXES-NOT: for ({{.*[^:]:[^:].*}})
|
||||
|
||||
namespace Negative {
|
||||
|
||||
const int N = 6;
|
||||
int arr[N] = {1, 2, 3, 4, 5, 6};
|
||||
int (*pArr)[N] = &arr;
|
||||
int sum = 0;
|
||||
|
||||
// Checks for the index start and end:
|
||||
void indexStartAndEnd() {
|
||||
for (int i = 0; i < N + 1; ++i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; i < N - 1; ++i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 1; i < N; ++i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 1; i < N; ++i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0;; ++i)
|
||||
sum += (*pArr)[i];
|
||||
}
|
||||
|
||||
// Checks for invalid increment steps:
|
||||
void increment() {
|
||||
for (int i = 0; i < N; --i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; i < N; i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; i < N;)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; i < N; i += 2)
|
||||
sum++;
|
||||
}
|
||||
|
||||
// Checks to make sure that the index isn't used outside of the array:
|
||||
void indexUse() {
|
||||
for (int i = 0; i < N; ++i)
|
||||
arr[i] += 1 + i;
|
||||
}
|
||||
|
||||
// Check for loops that don't mention arrays
|
||||
void noArray() {
|
||||
for (int i = 0; i < N; ++i)
|
||||
sum += i;
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; ++i)
|
||||
;
|
||||
}
|
||||
|
||||
// Checks for incorrect loop variables.
|
||||
void mixedVariables() {
|
||||
int badIndex;
|
||||
for (int i = 0; badIndex < N; ++i)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; i < N; ++badIndex)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; badIndex < N; ++badIndex)
|
||||
sum += arr[i];
|
||||
|
||||
for (int i = 0; badIndex < N; ++badIndex)
|
||||
sum += arr[badIndex];
|
||||
}
|
||||
|
||||
// Checks for multiple arrays indexed.
|
||||
void multipleArrays() {
|
||||
int badArr[N];
|
||||
|
||||
for (int i = 0; i < N; ++i)
|
||||
sum += arr[i] + badArr[i];
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
int k = badArr[i];
|
||||
sum += arr[i] + k;
|
||||
}
|
||||
}
|
||||
|
||||
struct HasArr {
|
||||
int Arr[N];
|
||||
Val ValArr[N];
|
||||
};
|
||||
|
||||
struct HasIndirectArr {
|
||||
HasArr HA;
|
||||
void implicitThis() {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", HA.Arr[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", HA.ValArr[i].x);
|
||||
}
|
||||
}
|
||||
|
||||
void explicitThis() {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", this->HA.Arr[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < N; ++i) {
|
||||
printf("%d", this->HA.ValArr[i].x);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
namespace NegativeIterator {
|
||||
|
||||
S s;
|
||||
T t;
|
||||
U u;
|
||||
|
||||
struct BadBeginEnd : T {
|
||||
iterator notBegin();
|
||||
iterator notEnd();
|
||||
};
|
||||
|
||||
void notBeginOrEnd() {
|
||||
BadBeginEnd Bad;
|
||||
for (T::iterator i = Bad.notBegin(), e = Bad.end(); i != e; ++i)
|
||||
int k = *i;
|
||||
|
||||
for (T::iterator i = Bad.begin(), e = Bad.notEnd(); i != e; ++i)
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
void badLoopShapes() {
|
||||
for (T::iterator i = t.begin(), e = t.end(), f = e; i != e; ++i)
|
||||
int k = *i;
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e;)
|
||||
int k = *i;
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end();; ++i)
|
||||
int k = *i;
|
||||
|
||||
T::iterator outsideI;
|
||||
T::iterator outsideE;
|
||||
|
||||
for (; outsideI != outsideE; ++outsideI)
|
||||
int k = *outsideI;
|
||||
}
|
||||
|
||||
void iteratorArrayMix() {
|
||||
int lower;
|
||||
const int N = 6;
|
||||
for (T::iterator i = t.begin(), e = t.end(); lower < N; ++i)
|
||||
int k = *i;
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end(); lower < N; ++lower)
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
struct ExtraConstructor : T::iterator {
|
||||
ExtraConstructor(T::iterator, int);
|
||||
explicit ExtraConstructor(T::iterator);
|
||||
};
|
||||
|
||||
void badConstructor() {
|
||||
for (T::iterator i = ExtraConstructor(t.begin(), 0), e = t.end();
|
||||
i != e; ++i)
|
||||
int k = *i;
|
||||
for (T::iterator i = ExtraConstructor(t.begin()), e = t.end(); i != e; ++i)
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
void iteratorMemberUsed() {
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
i.x = *i;
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
int k = i.x + *i;
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
int k = e.x + *i;
|
||||
}
|
||||
|
||||
void iteratorMethodCalled() {
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
i.insert(3);
|
||||
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
if (i != i)
|
||||
int k = 3;
|
||||
}
|
||||
|
||||
void iteratorOperatorCalled() {
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
int k = *(++i);
|
||||
|
||||
for (S::iterator i = s.begin(), e = s.end(); i != e; ++i)
|
||||
MutableVal k = *(++i);
|
||||
}
|
||||
|
||||
void differentContainers() {
|
||||
T other;
|
||||
for (T::iterator i = t.begin(), e = other.end(); i != e; ++i)
|
||||
int k = *i;
|
||||
|
||||
for (T::iterator i = other.begin(), e = t.end(); i != e; ++i)
|
||||
int k = *i;
|
||||
|
||||
S otherS;
|
||||
for (S::iterator i = s.begin(), e = otherS.end(); i != e; ++i)
|
||||
MutableVal k = *i;
|
||||
|
||||
for (S::iterator i = otherS.begin(), e = s.end(); i != e; ++i)
|
||||
MutableVal k = *i;
|
||||
}
|
||||
|
||||
void wrongIterators() {
|
||||
T::iterator other;
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != other; ++i)
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
struct EvilArrow : U {
|
||||
// Please, no one ever write code like this.
|
||||
U *operator->();
|
||||
};
|
||||
|
||||
void differentMemberAccessTypes() {
|
||||
EvilArrow A;
|
||||
for (EvilArrow::iterator i = A.begin(), e = A->end(); i != e; ++i)
|
||||
Val k = *i;
|
||||
for (EvilArrow::iterator i = A->begin(), e = A.end(); i != e; ++i)
|
||||
Val k = *i;
|
||||
}
|
||||
|
||||
void f(const T::iterator &it, int);
|
||||
void f(const T &it, int);
|
||||
void g(T &it, int);
|
||||
|
||||
void iteratorPassedToFunction() {
|
||||
for (T::iterator i = t.begin(), e = t.end(); i != e; ++i)
|
||||
f(i, *i);
|
||||
}
|
||||
|
||||
// FIXME: These tests can be removed if this tool ever does enough analysis to
|
||||
// decide that this is a safe transformation. Until then, we don't want it
|
||||
// applied.
|
||||
void iteratorDefinedOutside() {
|
||||
T::iterator theEnd = t.end();
|
||||
for (T::iterator i = t.begin(); i != theEnd; ++i)
|
||||
int k = *i;
|
||||
|
||||
T::iterator theBegin = t.begin();
|
||||
for (T::iterator e = t.end(); theBegin != e; ++theBegin)
|
||||
int k = *theBegin;
|
||||
}
|
||||
|
||||
} // namespace NegativeIterator
|
||||
|
||||
namespace NegativePseudoArray {
|
||||
|
||||
const int N = 6;
|
||||
dependent<int> v;
|
||||
dependent<int> *pv;
|
||||
|
||||
transparent<dependent<int>> cv;
|
||||
int sum = 0;
|
||||
|
||||
// Checks for the index start and end:
|
||||
void indexStartAndEnd() {
|
||||
for (int i = 0; i < v.size() + 1; ++i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; i < v.size() - 1; ++i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 1; i < v.size(); ++i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 1; i < v.size(); ++i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0;; ++i)
|
||||
sum += (*pv)[i];
|
||||
}
|
||||
|
||||
// Checks for invalid increment steps:
|
||||
void increment() {
|
||||
for (int i = 0; i < v.size(); --i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; i < v.size(); i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; i < v.size();)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; i < v.size(); i += 2)
|
||||
sum++;
|
||||
}
|
||||
|
||||
// Checks to make sure that the index isn't used outside of the container:
|
||||
void indexUse() {
|
||||
for (int i = 0; i < v.size(); ++i)
|
||||
v[i] += 1 + i;
|
||||
}
|
||||
|
||||
// Checks for incorrect loop variables.
|
||||
void mixedVariables() {
|
||||
int badIndex;
|
||||
for (int i = 0; badIndex < v.size(); ++i)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; i < v.size(); ++badIndex)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; badIndex < v.size(); ++badIndex)
|
||||
sum += v[i];
|
||||
|
||||
for (int i = 0; badIndex < v.size(); ++badIndex)
|
||||
sum += v[badIndex];
|
||||
}
|
||||
|
||||
// Checks for an array indexed in addition to the container.
|
||||
void multipleArrays() {
|
||||
int badArr[N];
|
||||
|
||||
for (int i = 0; i < v.size(); ++i)
|
||||
sum += v[i] + badArr[i];
|
||||
|
||||
for (int i = 0; i < v.size(); ++i)
|
||||
sum += badArr[i];
|
||||
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
int k = badArr[i];
|
||||
sum += k + 2;
|
||||
}
|
||||
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
int k = badArr[i];
|
||||
sum += v[i] + k;
|
||||
}
|
||||
}
|
||||
|
||||
// Checks for multiple containers being indexed container.
|
||||
void multipleContainers() {
|
||||
dependent<int> badArr;
|
||||
|
||||
for (int i = 0; i < v.size(); ++i)
|
||||
sum += v[i] + badArr[i];
|
||||
|
||||
for (int i = 0; i < v.size(); ++i)
|
||||
sum += badArr[i];
|
||||
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
int k = badArr[i];
|
||||
sum += k + 2;
|
||||
}
|
||||
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
int k = badArr[i];
|
||||
sum += v[i] + k;
|
||||
}
|
||||
}
|
||||
|
||||
// Check to make sure that dereferenced pointers-to-containers behave nicely.
|
||||
void derefContainer() {
|
||||
// Note the dependent<T>::operator*() returns another dependent<T>.
|
||||
// This test makes sure that we don't allow an arbitrary number of *'s.
|
||||
for (int i = 0; i < pv->size(); ++i)
|
||||
sum += (**pv).at(i);
|
||||
|
||||
for (int i = 0; i < pv->size(); ++i)
|
||||
sum += (**pv)[i];
|
||||
}
|
||||
|
||||
void wrongEnd() {
|
||||
int bad;
|
||||
for (int i = 0, e = v.size(); i < bad; ++i)
|
||||
sum += v[i];
|
||||
}
|
||||
|
||||
// Checks to see that non-const member functions are not called on the container
|
||||
// object.
|
||||
// These could be conceivably allowed with a lower required confidence level.
|
||||
void memberFunctionCalled() {
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
sum += v[i];
|
||||
v.foo();
|
||||
}
|
||||
|
||||
for (int i = 0; i < v.size(); ++i) {
|
||||
sum += v[i];
|
||||
dependent<int>::iterator it = v.begin();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace NegativePseudoArray
|
||||
|
||||
namespace NegativeMultiEndCall {
|
||||
|
||||
S s;
|
||||
T t;
|
||||
U u;
|
||||
|
||||
void f(X);
|
||||
void f(S);
|
||||
void f(T);
|
||||
|
||||
void complexContainer() {
|
||||
X x;
|
||||
for (S::iterator i = x.s.begin(), e = x.s.end(); i != e; ++i) {
|
||||
f(x);
|
||||
MutableVal k = *i;
|
||||
}
|
||||
|
||||
for (T::iterator i = x.t.begin(), e = x.t.end(); i != e; ++i) {
|
||||
f(x);
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
for (S::iterator i = x.s.begin(), e = x.s.end(); i != e; ++i) {
|
||||
f(x.s);
|
||||
MutableVal k = *i;
|
||||
}
|
||||
|
||||
for (T::iterator i = x.t.begin(), e = x.t.end(); i != e; ++i) {
|
||||
f(x.t);
|
||||
int k = *i;
|
||||
}
|
||||
|
||||
for (S::iterator i = x.getS().begin(), e = x.getS().end(); i != e; ++i) {
|
||||
f(x.getS());
|
||||
MutableVal k = *i;
|
||||
}
|
||||
|
||||
X exes[5];
|
||||
int index = 0;
|
||||
|
||||
for (S::iterator i = exes[index].getS().begin(),
|
||||
e = exes[index].getS().end();
|
||||
i != e; ++i) {
|
||||
index++;
|
||||
MutableVal k = *i;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace NegativeMultiEndCall
|
Loading…
Reference in New Issue