Introduce loop body skewing / loop pipelining / loop shifting utility.

- loopBodySkew shifts statements of a loop body by stmt-wise delays, and is
  typically meant to be used to:
  - allow overlap of non-blocking start/wait until completion operations with
    other computation
  - allow shifting of statements (for better register
    reuse/locality/parallelism)
  - software pipelining (when applied to the innermost loop)
- an additional argument specifies whether to unroll the prologue and epilogue.
- add method to check SSA dominance preservation.
- add a fake loop pipeline pass to test this utility.

Sample input/output are below. While on this, fix/add following:

- fix minor bug in getAddMulPureAffineExpr
- add additional builder methods for common affine map cases
- fix const_operand_iterator's for ForStmt, etc. When there is no such thing
  as 'const MLValue', the iterator shouldn't be returning const MLValue's.
  Returning MLValue is const correct.

Sample input/output examples:

1) Simplest case: shift second statement by one.

Input:

for %i = 0 to 7 {
  %y = "foo"(%i) : (affineint) -> affineint
  %x = "bar"(%i) : (affineint) -> affineint
}

Output:

#map0 = (d0) -> (d0 - 1)
mlfunc @loop_nest_simple1() {
  %c8 = constant 8 : affineint
  %c0 = constant 0 : affineint
  %0 = "foo"(%c0) : (affineint) -> affineint
  for %i0 = 1 to 7 {
    %1 = "foo"(%i0) : (affineint) -> affineint
    %2 = affine_apply #map0(%i0)
    %3 = "bar"(%2) : (affineint) -> affineint
  }
  %4 = affine_apply #map0(%c8)
  %5 = "bar"(%4) : (affineint) -> affineint
  return
}

2) DMA overlap: shift dma.wait and compute by one.

Input
  for %i = 0 to 7 {
    %pingpong = affine_apply (d0) -> (d0 mod 2) (%i)
    "dma.enqueue"(%pingpong) : (affineint) -> affineint
    %pongping = affine_apply (d0) -> (d0 mod 2) (%i)
    "dma.wait"(%pongping) : (affineint) -> affineint
    "compute1"(%pongping) : (affineint) -> affineint
  }

Output

#map0 = (d0) -> (d0 mod 2)
#map1 = (d0) -> (d0 - 1)
#map2 = ()[s0] -> (s0 + 7)
mlfunc @loop_nest_dma() {
  %c8 = constant 8 : affineint
  %c0 = constant 0 : affineint
  %0 = affine_apply #map0(%c0)
  %1 = "dma.enqueue"(%0) : (affineint) -> affineint
  for %i0 = 1 to 7 {
    %2 = affine_apply #map0(%i0)
    %3 = "dma.enqueue"(%2) : (affineint) -> affineint
    %4 = affine_apply #map1(%i0)
    %5 = affine_apply #map0(%4)
    %6 = "dma.wait"(%5) : (affineint) -> affineint
    %7 = "compute1"(%5) : (affineint) -> affineint
  }
  %8 = affine_apply #map1(%c8)
  %9 = affine_apply #map0(%8)
  %10 = "dma.wait"(%9) : (affineint) -> affineint
  %11 = "compute1"(%9) : (affineint) -> affineint
  return
}

3) With arbitrary affine bound maps:

Shift last two statements by two.

Input:

  for %i = %N to ()[s0] -> (s0 + 7)()[%N] {
    %y = "foo"(%i) : (affineint) -> affineint
    %x = "bar"(%i) : (affineint) -> affineint
    %z = "foo_bar"(%i) : (affineint) -> (affineint)
    "bar_foo"(%i) : (affineint) -> (affineint)
  }

Output

#map0 = ()[s0] -> (s0 + 1)
#map1 = ()[s0] -> (s0 + 2)
#map2 = ()[s0] -> (s0 + 7)
#map3 = (d0) -> (d0 - 2)
#map4 = ()[s0] -> (s0 + 8)
#map5 = ()[s0] -> (s0 + 9)

  for %i0 = %arg0 to #map0()[%arg0] {
    %0 = "foo"(%i0) : (affineint) -> affineint
    %1 = "bar"(%i0) : (affineint) -> affineint
  }
  for %i1 = #map1()[%arg0] to #map2()[%arg0] {
    %2 = "foo"(%i1) : (affineint) -> affineint
    %3 = "bar"(%i1) : (affineint) -> affineint
    %4 = affine_apply #map3(%i1)
    %5 = "foo_bar"(%4) : (affineint) -> affineint
    %6 = "bar_foo"(%4) : (affineint) -> affineint
  }
  for %i2 = #map4()[%arg0] to #map5()[%arg0] {
    %7 = affine_apply #map3(%i2)
    %8 = "foo_bar"(%7) : (affineint) -> affineint
    %9 = "bar_foo"(%7) : (affineint) -> affineint
  }

4) Shift one by zero, second by one, third by two

  for %i = 0 to 7 {
    %y = "foo"(%i) : (affineint) -> affineint
    %x = "bar"(%i) : (affineint) -> affineint
    %z = "foobar"(%i) : (affineint) -> affineint
  }

#map0 = (d0) -> (d0 - 1)
#map1 = (d0) -> (d0 - 2)
#map2 = ()[s0] -> (s0 + 7)

  %c9 = constant 9 : affineint
  %c8 = constant 8 : affineint
  %c1 = constant 1 : affineint
  %c0 = constant 0 : affineint
  %0 = "foo"(%c0) : (affineint) -> affineint
  %1 = "foo"(%c1) : (affineint) -> affineint
  %2 = affine_apply #map0(%c1)
  %3 = "bar"(%2) : (affineint) -> affineint
  for %i0 = 2 to 7 {
    %4 = "foo"(%i0) : (affineint) -> affineint
    %5 = affine_apply #map0(%i0)
    %6 = "bar"(%5) : (affineint) -> affineint
    %7 = affine_apply #map1(%i0)
    %8 = "foobar"(%7) : (affineint) -> affineint
  }
  %9 = affine_apply #map0(%c8)
  %10 = "bar"(%9) : (affineint) -> affineint
  %11 = affine_apply #map1(%c8)
  %12 = "foobar"(%11) : (affineint) -> affineint
  %13 = affine_apply #map1(%c9)
  %14 = "foobar"(%13) : (affineint) -> affineint

5) SSA dominance violated; no shifting if a shift is specified for the second
statement.

  for %i = 0 to 7 {
    %x = "foo"(%i) : (affineint) -> affineint
    "bar"(%x) : (affineint) -> affineint
  }

PiperOrigin-RevId: 214975731
This commit is contained in:
Uday Bondhugula 2018-09-28 12:17:26 -07:00 committed by jpienaar
parent ec35e51f6d
commit 041817a45e
10 changed files with 451 additions and 3 deletions

View File

@ -140,6 +140,16 @@ public:
// One symbol identity map: ()[s] -> (s).
AffineMap *getSymbolIdentityMap();
/// Returns a map that shifts its (single) input dimension by 'shift'.
/// (d0) -> (d0 + shift)
AffineMap *getSingleDimShiftAffineMap(int64_t shift);
/// Returns an affine map that is a translation (shift) of all result
/// expressions in 'map' by 'shift'.
/// Eg: input: (d0, d1)[s0] -> (d0, d1 + s0), shift = 2
/// returns: (d0, d1)[s0] -> (d0 + 2, d1 + s0 + 2)
AffineMap *getShiftedAffineMap(AffineMap *map, int64_t shift);
// Integer set.
IntegerSet *getIntegerSet(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr *> constraints,

View File

@ -311,9 +311,15 @@ public:
const StmtOperand &getStmtOperand(unsigned idx) const {
return getStmtOperands()[idx];
}
// TODO: provide iterators for the lower and upper bound operands
// if the current access via getLowerBound(), getUpperBound() is too slow.
/// Returns operands for the lower bound map.
operand_range getLowerBoundOperands();
/// Returns operands for the upper bound map.
operand_range getUpperBoundOperands();
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//

View File

@ -33,6 +33,15 @@ class ForStmt;
class MLFunction;
class MLFuncBuilder;
// Values that can be used to signal success/failure. This can be implicitly
// converted to/from boolean values, with false representing success and true
// failure.
struct LLVM_NODISCARD UtilResult {
enum ResultEnum { Success, Failure } value;
UtilResult(ResultEnum v) : value(v) {}
operator bool() const { return value == Failure; }
};
/// Unrolls this for statement completely if the trip count is known to be
/// constant. Returns false otherwise.
bool loopUnrollFull(ForStmt *forStmt);
@ -72,6 +81,16 @@ AffineMap *getUnrolledLoopUpperBound(const ForStmt &forStmt,
unsigned unrollFactor,
MLFuncBuilder *builder);
/// Skew the statements in the body of a 'for' statement with the specified
/// statement-wise delays.
UtilResult stmtBodySkew(ForStmt *forStmt, ArrayRef<uint64_t> delays,
bool unrollPrologueEpilogue = false);
/// Checks if SSA dominance would be violated if a for stmt's child statements
/// are shifted by the specified delays.
bool checkDominancePreservationOnShift(const ForStmt &forStmt,
ArrayRef<uint64_t> delays);
} // end namespace mlir
#endif // MLIR_TRANSFORMS_LOOP_UTILS_H

View File

@ -47,6 +47,10 @@ MLFunctionPass *createLoopUnrollAndJamPass(int unrollJamFactor = -1);
/// Creates an affine expression simplification pass.
FunctionPass *createSimplifyAffineExprPass();
/// Creates a pass to pipeline explicit movement of data across levels of the
/// memory hierarchy.
MLFunctionPass *createPipelineDataTransferPass();
/// Replaces all ML functions in the module with equivalent CFG functions.
/// Function references are appropriately patched to refer to the newly
/// generated CFG functions.

View File

@ -251,7 +251,7 @@ AffineExpr *Builder::getAddMulPureAffineExpr(unsigned numDims,
expr = AffineBinaryOpExpr::getAdd(expr, term, context);
}
// Constant term.
unsigned constTerm = coeffs[coeffs.size() - 1];
int64_t constTerm = coeffs[coeffs.size() - 1];
if (constTerm != 0)
expr = AffineBinaryOpExpr::getAdd(expr, constTerm, context);
return expr;
@ -278,6 +278,22 @@ AffineMap *Builder::getSymbolIdentityMap() {
context);
}
AffineMap *Builder::getSingleDimShiftAffineMap(int64_t shift) {
// expr = 1*d0 + shift.
auto *expr = getAddMulPureAffineExpr(1, 0, {1, shift});
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr, {}, context);
}
AffineMap *Builder::getShiftedAffineMap(AffineMap *map, int64_t shift) {
SmallVector<AffineExpr *, 4> shiftedResults;
shiftedResults.reserve(map->getNumResults());
for (auto *resultExpr : map->getResults()) {
shiftedResults.push_back(getAddExpr(resultExpr, shift));
}
return AffineMap::get(map->getNumDims(), map->getNumSymbols(), shiftedResults,
map->getRangeSizes(), context);
}
//===----------------------------------------------------------------------===//
// CFG function elements.
//===----------------------------------------------------------------------===//

View File

@ -350,6 +350,15 @@ void ForStmt::setConstantUpperBound(int64_t value) {
setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
}
ForStmt::operand_range ForStmt::getLowerBoundOperands() {
return {operand_begin(),
operand_begin() + getLowerBoundMap()->getNumInputs()};
}
ForStmt::operand_range ForStmt::getUpperBoundOperands() {
return {operand_begin() + getLowerBoundMap()->getNumInputs(), operand_end()};
}
bool ForStmt::matchingBoundOperandList() const {
if (lbMap->getNumDims() != ubMap->getNumDims() ||
lbMap->getNumSymbols() != ubMap->getNumSymbols())

View File

@ -1,4 +1,4 @@
//===- LoopUtils.cpp - Misc loop utilities for simplification //-----------===//
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Copyright 2019 The MLIR Authors.
//
@ -15,7 +15,7 @@
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous loop simplification routines.
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
@ -28,6 +28,7 @@
#include "mlir/IR/StandardOps.h"
#include "mlir/IR/Statements.h"
#include "mlir/IR/StmtVisitor.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
@ -161,3 +162,228 @@ void mlir::promoteSingleIterationLoops(MLFunction *f) {
LoopBodyPromoter fsw;
fsw.walkPostOrder(f);
}
/// Generates a for 'stmt' with the specified lower and upper bounds while
/// generating the right IV remappings for the delayed statements. The
/// statement blocks that go into the loop are specified in stmtGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the delay applied to that group of statements. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static ForStmt *
generateLoop(AffineMap *lb, AffineMap *ub,
const std::vector<std::pair<uint64_t, ArrayRef<Statement *>>>
&stmtGroupQueue,
unsigned offset, ForStmt *srcForStmt, MLFuncBuilder *b) {
SmallVector<MLValue *, 4> lbOperands(srcForStmt->getLowerBoundOperands());
SmallVector<MLValue *, 4> ubOperands(srcForStmt->getUpperBoundOperands());
auto *loopChunk =
b->createFor(srcForStmt->getLoc(), lbOperands, lb, ubOperands, ub);
OperationStmt::OperandMapTy operandMap;
for (auto it = stmtGroupQueue.begin() + offset, e = stmtGroupQueue.end();
it != e; ++it) {
auto elt = *it;
// All 'same delay' statements get added with the operands being remapped
// (to results of cloned statements).
// Generate the remapping if the delay is not zero: oldIV = newIV - delay.
// TODO(bondhugula): check if srcForStmt is actually used in elt.second
// instead of just checking if it's used at all.
if (!srcForStmt->use_empty() && elt.first != 0) {
auto b = MLFuncBuilder::getForStmtBodyBuilder(loopChunk);
auto *oldIV =
b.create<AffineApplyOp>(
srcForStmt->getLoc(),
b.getSingleDimShiftAffineMap(-static_cast<int64_t>(elt.first)),
loopChunk)
->getResult(0);
operandMap[srcForStmt] = cast<MLValue>(oldIV);
} else {
operandMap[srcForStmt] = static_cast<MLValue *>(loopChunk);
}
for (auto *stmt : elt.second) {
loopChunk->push_back(stmt->clone(operandMap, b->getContext()));
}
}
if (promoteIfSingleIteration(loopChunk))
return nullptr;
return loopChunk;
}
// Returns delay of that child statement of 'forStmt' which either has 'operand'
// as one of its operands or has a descendant statement with operand 'operand'.
// This is a naive implementation. If performance becomes an issue, a map can
// be used to store 'delays' - to look up the delay for a statement in constant
// time.
static uint64_t getContainingStmtDelay(const StmtOperand &operand,
const ForStmt &forStmt,
ArrayRef<uint64_t> delays) {
// Traverse up the statement hierarchy starting from the owner of operand to
// find the ancestor statement that resides in the block of 'forStmt'.
const Statement *stmt = operand.getOwner();
assert(stmt != nullptr);
while (stmt->getParentStmt() != &forStmt) {
stmt = stmt->getParentStmt();
assert(stmt && "traversing parent's should reach forStmt block");
}
// Look up the delay of 'stmt'.
unsigned j = 0;
for (const auto &s : forStmt) {
if (&s == stmt)
break;
j++;
}
assert(j < forStmt.getStatements().size() && "child stmt should be found");
return delays[j];
}
/// Checks if SSA dominance would be violated if a for stmt's body statements
/// are shifted by the specified delays. This method checks if a 'def' and all
/// its uses have the same delay factor.
bool mlir::checkDominancePreservationOnShift(const ForStmt &forStmt,
ArrayRef<uint64_t> delays) {
assert(delays.size() == forStmt.getStatements().size());
unsigned s = 0;
for (const auto &stmt : forStmt) {
// A for or if stmt does not produce any def/results (that are used
// outside).
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
for (unsigned i = 0, e = opStmt->getNumResults(); i < e; ++i) {
const MLValue *result = opStmt->getResult(i);
for (const StmtOperand &use : result->getUses()) {
if (delays[s] != getContainingStmtDelay(use, forStmt, delays))
return false;
}
}
}
s++;
}
return true;
}
/// Skew the statements in the body of a 'for' statement with the specified
/// statement-wise delays. The delays are with respect to the original execution
/// order. A delay of zero for each statement will lead to no change.
// The skewing of statements with respect to one another can be used for example
// to allow overlap of asynchronous operations (such as DMA communication) with
// computation, or just relative shifting of statements for better register
// reuse, locality or parallelism. As such, the delays are typically expected to
// be at most of the order of the number of statements. This method should not
// be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of statements in
// the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based depedence preservation check rests with the users of this
// method.
UtilResult mlir::stmtBodySkew(ForStmt *forStmt, ArrayRef<uint64_t> delays,
bool unrollPrologueEpilogue) {
if (forStmt->getStatements().empty())
return UtilResult::Success;
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(*forStmt);
if (!mayBeConstTripCount.hasValue())
return UtilResult::Failure;
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(checkDominancePreservationOnShift(*forStmt, delays) &&
"dominance preservation failed\n");
unsigned numChildStmts = forStmt->getStatements().size();
// Do a linear time (counting) sort for the delays.
uint64_t maxDelay = 0;
for (unsigned i = 0; i < numChildStmts; i++) {
maxDelay = std::max(maxDelay, delays[i]);
}
// Such large delays are not the typical use case.
if (maxDelay >= numChildStmts)
return UtilResult::Failure;
// An array of statement groups sorted by delay amount; each group has all
// statements with the same delay in the order in which they appear in the
// body of the 'for' stmt.
std::vector<std::vector<Statement *>> sortedStmtGroups(maxDelay + 1);
unsigned pos = 0;
for (auto &stmt : *forStmt) {
auto delay = delays[pos++];
sortedStmtGroups[delay].push_back(&stmt);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
ForStmt *prologue = nullptr;
ForStmt *epilogue = nullptr;
// Do a sweep over the sorted delays while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of statements is paired with its delay.
std::vector<std::pair<uint64_t, ArrayRef<Statement *>>> stmtGroupQueue;
auto *origLbMap = forStmt->getLowerBoundMap();
uint64_t lbDelay = 0;
MLFuncBuilder b(forStmt);
for (uint64_t d = 0, e = sortedStmtGroups.size(); d < e; ++d) {
// If nothing is delayed by d, continue.
if (sortedStmtGroups[d].empty())
continue;
if (!stmtGroupQueue.empty()) {
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// ( lbDelay, min(lbDelay + tripCount - 1, d - 1) ] and the body of the
// loop needs to have all statements in stmtQueue in that order.
ForStmt *res;
if (lbDelay + tripCount - 1 < d - 1) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, lbDelay + tripCount - 1),
stmtGroupQueue, 0, forStmt, &b);
// Entire loop for the queued stmt groups generated, empty it.
stmtGroupQueue.clear();
lbDelay += tripCount;
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, d - 1),
stmtGroupQueue, 0, forStmt, &b);
lbDelay = d;
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbDelay = d;
}
// Augment the list of statements that get into the current open interval.
stmtGroupQueue.push_back({d, sortedStmtGroups[d]});
}
// Those statements groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = stmtGroupQueue.size(); i < e; ++i) {
uint64_t ubDelay = stmtGroupQueue[i].first + tripCount - 1;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, ubDelay),
stmtGroupQueue, i, forStmt, &b);
lbDelay = ubDelay + 1;
if (!prologue)
prologue = epilogue;
}
// Erase the original for stmt.
forStmt->eraseFromBlock();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue && epilogue != prologue)
loopUnrollFull(epilogue);
return UtilResult::Success;
}

View File

@ -0,0 +1,72 @@
//===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to pipeline data transfers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Passes.h"
#include "mlir/IR/MLFunction.h"
#include "mlir/IR/Statements.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Pass.h"
using namespace mlir;
namespace {
struct PipelineDataTransfer : public MLFunctionPass {
explicit PipelineDataTransfer() {}
PassResult runOnMLFunction(MLFunction *f) override;
};
} // end anonymous namespace
/// Creates a pass to pipeline explicit movement of data across levels of the
/// memory hierarchy.
MLFunctionPass *mlir::createPipelineDataTransferPass() {
return new PipelineDataTransfer();
}
// For testing purposes, this just runs on the first statement of the MLFunction
// if that statement is a for stmt, and shifts the second half of its body by
// one.
PassResult PipelineDataTransfer::runOnMLFunction(MLFunction *f) {
if (f->empty())
return PassResult::Success;
auto *forStmt = dyn_cast<ForStmt>(&f->front());
if (!forStmt)
return PassResult::Failure;
unsigned numStmts = forStmt->getStatements().size();
if (numStmts == 0)
return PassResult::Success;
std::vector<uint64_t> delays(numStmts);
for (unsigned i = 0; i < numStmts; i++)
delays[i] = (i < numStmts / 2) ? 0 : 1;
if (!checkDominancePreservationOnShift(*forStmt, delays))
// Violates SSA dominance.
return PassResult::Failure;
if (stmtBodySkew(forStmt, delays))
return PassResult::Failure;
return PassResult::Success;
}

View File

@ -0,0 +1,79 @@
// RUN: mlir-opt %s -pipeline-data-transfer | FileCheck %s
// CHECK-LABEL: mlfunc @loop_nest_simple() {
// CHECK: %c8 = constant 8 : affineint
// CHECK-NEXT: %c0 = constant 0 : affineint
// CHECK-NEXT: %0 = "foo"(%c0) : (affineint) -> affineint
// CHECK-NEXT: for %i0 = 1 to 7 {
// CHECK-NEXT: %1 = "foo"(%i0) : (affineint) -> affineint
// CHECK-NEXT: %2 = affine_apply #map0(%i0)
// CHECK-NEXT: %3 = "bar"(%2) : (affineint) -> affineint
// CHECK-NEXT: }
// CHECK-NEXT: %4 = affine_apply #map0(%c8)
// CHECK-NEXT: %5 = "bar"(%4) : (affineint) -> affineint
// CHECK-NEXT: return
mlfunc @loop_nest_simple() {
for %i = 0 to 7 {
%y = "foo"(%i) : (affineint) -> affineint
%x = "bar"(%i) : (affineint) -> affineint
}
return
}
// CHECK-LABEL: mlfunc @loop_nest_dma() {
// CHECK: %c8 = constant 8 : affineint
// CHECK-NEXT: %c0 = constant 0 : affineint
// CHECK-NEXT: %0 = affine_apply #map1(%c0)
// CHECK-NEXT: %1 = "dma.enqueue"(%0) : (affineint) -> affineint
// CHECK-NEXT: %2 = "dma.enqueue"(%0) : (affineint) -> affineint
// CHECK-NEXT: for %i0 = 1 to 7 {
// CHECK-NEXT: %3 = affine_apply #map1(%i0)
// CHECK-NEXT: %4 = "dma.enqueue"(%3) : (affineint) -> affineint
// CHECK-NEXT: %5 = "dma.enqueue"(%3) : (affineint) -> affineint
// CHECK-NEXT: %6 = affine_apply #map0(%i0)
// CHECK-NEXT: %7 = affine_apply #map1(%6)
// CHECK-NEXT: %8 = "dma.wait"(%7) : (affineint) -> affineint
// CHECK-NEXT: %9 = "compute1"(%7) : (affineint) -> affineint
// CHECK-NEXT: }
// CHECK-NEXT: %10 = affine_apply #map0(%c8)
// CHECK-NEXT: %11 = affine_apply #map1(%10)
// CHECK-NEXT: %12 = "dma.wait"(%11) : (affineint) -> affineint
// CHECK-NEXT: %13 = "compute1"(%11) : (affineint) -> affineint
// CHECK-NEXT: return
mlfunc @loop_nest_dma() {
for %i = 0 to 7 {
%pingpong = affine_apply (d0) -> (d0 mod 2) (%i)
"dma.enqueue"(%pingpong) : (affineint) -> affineint
"dma.enqueue"(%pingpong) : (affineint) -> affineint
%pongping = affine_apply (d0) -> (d0 mod 2) (%i)
"dma.wait"(%pongping) : (affineint) -> affineint
"compute1"(%pongping) : (affineint) -> affineint
}
return
}
// CHECK-LABEL: mlfunc @loop_nest_bound_map(%arg0 : affineint) {
// CHECK: %0 = affine_apply #map2()[%arg0]
// CHECK-NEXT: %1 = "foo"(%0) : (affineint) -> affineint
// CHECK-NEXT: %2 = "bar"(%0) : (affineint) -> affineint
// CHECK-NEXT: for %i0 = #map3()[%arg0] to #map4()[%arg0] {
// CHECK-NEXT: %3 = "foo"(%i0) : (affineint) -> affineint
// CHECK-NEXT: %4 = "bar"(%i0) : (affineint) -> affineint
// CHECK-NEXT: %5 = affine_apply #map0(%i0)
// CHECK-NEXT: %6 = "foo_bar"(%5) : (affineint) -> affineint
// CHECK-NEXT: %7 = "bar_foo"(%5) : (affineint) -> affineint
// CHECK-NEXT: }
// CHECK-NEXT: %8 = affine_apply #map5()[%arg0]
// CHECK-NEXT: %9 = affine_apply #map0(%8)
// CHECK-NEXT: %10 = "foo_bar"(%9) : (affineint) -> affineint
// CHECK-NEXT: %11 = "bar_foo"(%9) : (affineint) -> affineint
// CHECK-NEXT: return
mlfunc @loop_nest_bound_map(%N : affineint) {
for %i = %N to ()[s0] -> (s0 + 7)()[%N] {
"foo"(%i) : (affineint) -> affineint
"bar"(%i) : (affineint) -> affineint
"foo_bar"(%i) : (affineint) -> (affineint)
"bar_foo"(%i) : (affineint) -> (affineint)
}
return
}

View File

@ -70,6 +70,7 @@ enum Passes {
ConvertToCFG,
LoopUnroll,
LoopUnrollAndJam,
PipelineDataTransfer,
PrintCFGGraph,
SimplifyAffineExpr,
TFRaiseControlFlow,
@ -85,6 +86,9 @@ static cl::list<Passes> passList(
clEnumValN(LoopUnroll, "loop-unroll", "Unroll loops"),
clEnumValN(LoopUnrollAndJam, "loop-unroll-jam",
"Unroll and jam loops"),
clEnumValN(PipelineDataTransfer, "pipeline-data-transfer",
"Pipeline non-blocking data transfers between"
"explicitly managed levels of the memory hierarchy"),
clEnumValN(PrintCFGGraph, "print-cfg-graph",
"Print CFG graph per function"),
clEnumValN(SimplifyAffineExpr, "simplify-affine-expr",
@ -179,6 +183,9 @@ static OptResult performActions(SourceMgr &sourceMgr, MLIRContext *context) {
case LoopUnrollAndJam:
pass = createLoopUnrollAndJamPass();
break;
case PipelineDataTransfer:
pass = createPipelineDataTransferPass();
break;
case PrintCFGGraph:
pass = createPrintCFGGraphPass();
break;