forked from OSchip/llvm-project
docs: Document optimizations in control flow integrity design doc.
llvm-svn: 230458
This commit is contained in:
parent
17ff680e42
commit
03054d489e
|
@ -6,7 +6,7 @@ This page documents the design of the :doc:`ControlFlowIntegrity` schemes
|
|||
supported by Clang.
|
||||
|
||||
Forward-Edge CFI for Virtual Calls
|
||||
----------------------------------
|
||||
==================================
|
||||
|
||||
This scheme works by allocating, for each static type used to make a virtual
|
||||
call, a region of read-only storage in the object file holding a bit vector
|
||||
|
@ -57,8 +57,7 @@ To emit a virtual call, the compiler will assemble code that checks that
|
|||
the object's virtual table pointer is in-bounds and aligned and that the
|
||||
relevant bit is set in the bit vector.
|
||||
|
||||
For example on x86 a typical virtual call may look like this if the bit
|
||||
vector is stored in memory:
|
||||
For example on x86 a typical virtual call may look like this:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
|
@ -80,7 +79,44 @@ vector is stored in memory:
|
|||
[...]
|
||||
15ef: 0f 0b ud2
|
||||
|
||||
Or if the bit vector fits in 32 bits:
|
||||
The compiler relies on co-operation from the linker in order to assemble
|
||||
the bit vectors for the whole program. It currently does this using LLVM's
|
||||
`bit sets`_ mechanism together with link-time optimization.
|
||||
|
||||
.. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
|
||||
.. _bit sets: http://llvm.org/docs/BitSets.html
|
||||
|
||||
Optimizations
|
||||
-------------
|
||||
|
||||
The scheme as described above is the fully general variant of the scheme.
|
||||
Most of the time we are able to apply one or more of the following
|
||||
optimizations to improve binary size or performance.
|
||||
|
||||
Stripping Leading/Trailing Zeros in Bit Vectors
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
If a bit vector contains leading or trailing zeros, we can strip them from
|
||||
the vector. The compiler will emit code to check if the pointer is in range
|
||||
of the region covered by ones, and perform the bit vector check using a
|
||||
truncated version of the bit vector. For example, the bit vectors for our
|
||||
example class hierarchy will be emitted like this:
|
||||
|
||||
.. csv-table:: Bit Vectors for A, B, C
|
||||
:header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
|
||||
|
||||
A, , , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, ,
|
||||
B, , , , , , , , 1, , , , , , ,
|
||||
C, , , , , , , , , , , , , 1, ,
|
||||
|
||||
Short Inline Bit Vectors
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
If the vector is sufficiently short, we can represent it as an inline constant
|
||||
on x86. This saves us a few instructions when reading the correct element
|
||||
of the bit vector.
|
||||
|
||||
If the bit vector fits in 32 bits, the code looks like this:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
|
@ -119,9 +155,82 @@ Or if the bit vector fits in 64 bits:
|
|||
[...]
|
||||
11f5: 0f 0b ud2
|
||||
|
||||
The compiler relies on co-operation from the linker in order to assemble
|
||||
the bit vector for the whole program. It currently does this using LLVM's
|
||||
`bit sets`_ mechanism together with link-time optimization.
|
||||
If the bit vector consists of a single bit, there is only one possible
|
||||
virtual table, and the check can consist of a single equality comparison:
|
||||
|
||||
.. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
|
||||
.. _bit sets: http://llvm.org/docs/BitSets.html
|
||||
.. code-block:: none
|
||||
|
||||
9a2: 48 8b 03 mov (%rbx),%rax
|
||||
9a5: 48 8d 0d a4 13 00 00 lea 0x13a4(%rip),%rcx
|
||||
9ac: 48 39 c8 cmp %rcx,%rax
|
||||
9af: 75 25 jne 9d6 <main+0x86>
|
||||
9b1: 48 89 df mov %rbx,%rdi
|
||||
9b4: ff 10 callq *(%rax)
|
||||
[...]
|
||||
9d6: 0f 0b ud2
|
||||
|
||||
Virtual Table Layout
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The compiler lays out classes of disjoint hierarchies in separate regions
|
||||
of the object file. At worst, bit vectors in disjoint hierarchies only
|
||||
need to cover their disjoint hierarchy. But the closer that classes in
|
||||
sub-hierarchies are laid out to each other, the smaller the bit vectors for
|
||||
those sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
|
||||
Vectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
|
||||
out the globals efficiently to minimize the sizes of the underlying bitsets.
|
||||
|
||||
.. _GlobalLayoutBuilder: http://llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerBitSets.h
|
||||
|
||||
Alignment
|
||||
~~~~~~~~~
|
||||
|
||||
If all gaps between address points in a particular bit vector are multiples
|
||||
of powers of 2, the compiler can compress the bit vector by strengthening
|
||||
the alignment requirements of the virtual table pointer. For example, given
|
||||
this class hierarchy:
|
||||
|
||||
.. code-block:: c++
|
||||
|
||||
struct A {
|
||||
virtual void f1();
|
||||
virtual void f2();
|
||||
};
|
||||
|
||||
struct B : A {
|
||||
virtual void f1();
|
||||
virtual void f2();
|
||||
virtual void f3();
|
||||
virtual void f4();
|
||||
virtual void f5();
|
||||
virtual void f6();
|
||||
};
|
||||
|
||||
struct C : A {
|
||||
virtual void f1();
|
||||
virtual void f2();
|
||||
};
|
||||
|
||||
The virtual tables will be laid out like this:
|
||||
|
||||
.. csv-table:: Virtual Table Layout for A, B, C
|
||||
:header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
||||
|
||||
A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2
|
||||
|
||||
Notice that each address point for A is separated by 4 words. This lets us
|
||||
emit a compressed bit vector for A that looks like this:
|
||||
|
||||
.. csv-table::
|
||||
:header: 2, 6, 10, 14
|
||||
|
||||
1, 1, 0, 1
|
||||
|
||||
At call sites, the compiler will strengthen the alignment requirements by
|
||||
using a different rotate count. For example, on a 64-bit machine where the
|
||||
address points are 4-word aligned (as in A from our example), the ``rol``
|
||||
instruction may look like this:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
dd2: 48 c1 c1 3b rol $0x3b,%rcx
|
||||
|
|
Loading…
Reference in New Issue