[OpenMP] Introduce target memory manager

Target memory manager is introduced in this patch which aims to manage target
memory such that they will not be freed immediately when they are not used
because the overhead of memory allocation and free is very large. For CUDA
device, cuMemFree even blocks the context switch on device which affects
concurrent kernel execution.

The memory manager can be taken as a memory pool. It divides the pool into
multiple buckets according to the size such that memory allocation/free
distributed to different buckets will not affect each other.

In this version, we use the exact-equality policy to find a free buffer. This
is an open question: will best-fit work better here? IMO, best-fit is not good
for target memory management because computation on GPU usually requires GBs of
data. Best-fit might lead to a serious waste. For example, there is a free
buffer of size 1960MB, and now we need a buffer of size 1200MB. If best-fit,
the free buffer will be returned, leading to a 760MB waste.

The allocation will happen when there is no free memory left, and the memory
free on device will take place in the following two cases:
1. The program ends. Obviously. However, there is a little problem that plugin
library is destroyed before the memory manager is destroyed, leading to a fact
that the call to target plugin will not succeed.
2. Device is out of memory when we request a new memory. The manager will walk
through all free buffers from the bucket with largest base size, pick up one
buffer, free it, and try to allocate immediately. If it succeeds, it will
return right away rather than freeing all buffers in free list.

Update:
A threshold (8KB by default) is set such that users could control what size of memory
will be managed by the manager. It can also be configured by an environment variable
`LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD`.

Reviewed By: jdoerfert, ye-luo, JonChesterfield

Differential Revision: https://reviews.llvm.org/D81054
This commit is contained in:
Shilei Tian 2020-08-19 23:12:02 -04:00
parent fc18e48320
commit 0289696751
6 changed files with 464 additions and 29 deletions

View File

@ -16,6 +16,7 @@ set(src_files
api.cpp
device.cpp
interface.cpp
MemoryManager.cpp
rtl.cpp
omptarget.cpp
)

View File

@ -0,0 +1,256 @@
//===----------- MemoryManager.cpp - Target independent memory manager ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Functionality for managing target memory.
// It is very expensive to call alloc/free functions of target devices. The
// MemoryManagerTy in this file is to reduce the number of invocations of those
// functions by buffering allocated device memory. In this way, when a memory is
// not used, it will not be freed on the device directly. The buffer is
// organized in a number of buckets for efficient look up. A memory will go to
// corresponding bucket based on its size. When a new memory request comes in,
// it will first check whether there is free memory of same size. If yes,
// returns it directly. Otherwise, allocate one on device.
//
// It also provides a way to opt out the memory manager. Memory
// allocation/deallocation will only be managed if the requested size is less
// than SizeThreshold, which can be configured via an environment variable
// LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD.
//
//===----------------------------------------------------------------------===//
#include "MemoryManager.h"
#include "device.h"
#include "private.h"
#include "rtl.h"
namespace {
constexpr const size_t BucketSize[] = {
0, 1U << 2, 1U << 3, 1U << 4, 1U << 5, 1U << 6, 1U << 7,
1U << 8, 1U << 9, 1U << 10, 1U << 11, 1U << 12, 1U << 13};
constexpr const int NumBuckets = sizeof(BucketSize) / sizeof(BucketSize[0]);
/// The threshold to manage memory using memory manager. If the request size is
/// larger than \p SizeThreshold, the allocation will not be managed by the
/// memory manager. This variable can be configured via an env \p
/// LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD. By default, the value is 8KB.
size_t SizeThreshold = 1U << 13;
/// Find the previous number that is power of 2 given a number that is not power
/// of 2.
size_t floorToPowerOfTwo(size_t Num) {
Num |= Num >> 1;
Num |= Num >> 2;
Num |= Num >> 4;
Num |= Num >> 8;
Num |= Num >> 16;
Num |= Num >> 32;
Num += 1;
return Num >> 1;
}
/// Find a suitable bucket
int findBucket(size_t Size) {
const size_t F = floorToPowerOfTwo(Size);
DP("findBucket: Size %zu is floored to %zu.\n", Size, F);
int L = 0, H = NumBuckets - 1;
while (H - L > 1) {
int M = (L + H) >> 1;
if (BucketSize[M] == F)
return M;
if (BucketSize[M] > F)
H = M - 1;
else
L = M;
}
assert(L >= 0 && L < NumBuckets && "L is out of range");
DP("findBucket: Size %zu goes to bucket %d\n", Size, L);
return L;
}
} // namespace
MemoryManagerTy::MemoryManagerTy(DeviceTy &Dev, size_t Threshold)
: FreeLists(NumBuckets), FreeListLocks(NumBuckets), Device(Dev) {
if (Threshold)
SizeThreshold = Threshold;
}
MemoryManagerTy::~MemoryManagerTy() {
// TODO: There is a little issue that target plugin is destroyed before this
// object, therefore the memory free will not succeed.
// Deallocate all memory in map
for (auto Itr = PtrToNodeTable.begin(); Itr != PtrToNodeTable.end(); ++Itr) {
assert(Itr->second.Ptr && "nullptr in map table");
deleteOnDevice(Itr->second.Ptr);
}
}
void *MemoryManagerTy::allocateOnDevice(size_t Size, void *HstPtr) const {
return Device.RTL->data_alloc(Device.RTLDeviceID, Size, HstPtr);
}
int MemoryManagerTy::deleteOnDevice(void *Ptr) const {
return Device.RTL->data_delete(Device.RTLDeviceID, Ptr);
}
void *MemoryManagerTy::freeAndAllocate(size_t Size, void *HstPtr) {
std::vector<void *> RemoveList;
// Deallocate all memory in FreeList
for (int I = 0; I < NumBuckets; ++I) {
FreeListTy &List = FreeLists[I];
std::lock_guard<std::mutex> Lock(FreeListLocks[I]);
if (List.empty())
continue;
for (const NodeTy &N : List) {
deleteOnDevice(N.Ptr);
RemoveList.push_back(N.Ptr);
}
FreeLists[I].clear();
}
// Remove all nodes in the map table which have been released
if (!RemoveList.empty()) {
std::lock_guard<std::mutex> LG(MapTableLock);
for (void *P : RemoveList)
PtrToNodeTable.erase(P);
}
// Try allocate memory again
return allocateOnDevice(Size, HstPtr);
}
void *MemoryManagerTy::allocateOrFreeAndAllocateOnDevice(size_t Size,
void *HstPtr) {
void *TgtPtr = allocateOnDevice(Size, HstPtr);
// We cannot get memory from the device. It might be due to OOM. Let's
// free all memory in FreeLists and try again.
if (TgtPtr == nullptr) {
DP("Failed to get memory on device. Free all memory in FreeLists and "
"try again.\n");
TgtPtr = freeAndAllocate(Size, HstPtr);
}
#ifdef OMPTARGET_DEBUG
if (TgtPtr == nullptr)
DP("Still cannot get memory on device probably because the device is "
"OOM.\n");
#endif
return TgtPtr;
}
void *MemoryManagerTy::allocate(size_t Size, void *HstPtr) {
// If the size is zero, we will not bother the target device. Just return
// nullptr directly.
if (Size == 0)
return nullptr;
DP("MemoryManagerTy::allocate: size %zu with host pointer " DPxMOD ".\n",
Size, DPxPTR(HstPtr));
// If the size is greater than the threshold, allocate it directly from
// device.
if (Size > SizeThreshold) {
DP("%zu is greater than the threshold %zu. Allocate it directly from "
"device\n",
Size, SizeThreshold);
void *TgtPtr = allocateOrFreeAndAllocateOnDevice(Size, HstPtr);
DP("Got target pointer " DPxMOD ". Return directly.\n", DPxPTR(TgtPtr));
return TgtPtr;
}
NodeTy *NodePtr = nullptr;
// Try to get a node from FreeList
{
const int B = findBucket(Size);
FreeListTy &List = FreeLists[B];
NodeTy TempNode(Size, nullptr);
std::lock_guard<std::mutex> LG(FreeListLocks[B]);
FreeListTy::const_iterator Itr = List.find(TempNode);
if (Itr != List.end()) {
NodePtr = &Itr->get();
List.erase(Itr);
}
}
#ifdef OMPTARGET_DEBUG
if (NodePtr != nullptr)
DP("Find one node " DPxMOD " in the bucket.\n", DPxPTR(NodePtr));
#endif
// We cannot find a valid node in FreeLists. Let's allocate on device and
// create a node for it.
if (NodePtr == nullptr) {
DP("Cannot find a node in the FreeLists. Allocate on device.\n");
// Allocate one on device
void *TgtPtr = allocateOrFreeAndAllocateOnDevice(Size, HstPtr);
if (TgtPtr == nullptr)
return nullptr;
// Create a new node and add it into the map table
{
std::lock_guard<std::mutex> Guard(MapTableLock);
auto Itr = PtrToNodeTable.emplace(TgtPtr, NodeTy(Size, TgtPtr));
NodePtr = &Itr.first->second;
}
DP("Node address " DPxMOD ", target pointer " DPxMOD ", size %zu\n",
DPxPTR(NodePtr), DPxPTR(TgtPtr), Size);
}
assert(NodePtr && "NodePtr should not be nullptr at this point");
return NodePtr->Ptr;
}
int MemoryManagerTy::free(void *TgtPtr) {
DP("MemoryManagerTy::free: target memory " DPxMOD ".\n", DPxPTR(TgtPtr));
NodeTy *P = nullptr;
// Look it up into the table
{
std::lock_guard<std::mutex> G(MapTableLock);
auto Itr = PtrToNodeTable.find(TgtPtr);
// We don't remove the node from the map table because the map does not
// change.
if (Itr != PtrToNodeTable.end())
P = &Itr->second;
}
// The memory is not managed by the manager
if (P == nullptr) {
DP("Cannot find its node. Delete it on device directly.\n");
return deleteOnDevice(TgtPtr);
}
// Insert the node to the free list
const int B = findBucket(P->Size);
DP("Found its node " DPxMOD ". Insert it to bucket %d.\n", DPxPTR(P), B);
{
std::lock_guard<std::mutex> G(FreeListLocks[B]);
FreeLists[B].insert(*P);
}
return OFFLOAD_SUCCESS;
}

View File

@ -0,0 +1,95 @@
//===----------- MemoryManager.h - Target independent memory manager ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Declarations for target independent memory manager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPENMP_LIBOMPTARGET_SRC_MEMORYMANAGER_H
#define LLVM_OPENMP_LIBOMPTARGET_SRC_MEMORYMANAGER_H
#include <cassert>
#include <functional>
#include <list>
#include <mutex>
#include <set>
#include <unordered_map>
#include <vector>
// Forward declaration
struct DeviceTy;
class MemoryManagerTy {
/// A structure stores the meta data of a target pointer
struct NodeTy {
/// Memory size
const size_t Size;
/// Target pointer
void *Ptr;
/// Constructor
NodeTy(size_t Size, void *Ptr) : Size(Size), Ptr(Ptr) {}
};
/// To make \p NodePtrTy ordered when they're put into \p std::multiset.
struct NodeCmpTy {
bool operator()(const NodeTy &LHS, const NodeTy &RHS) const {
return LHS.Size < RHS.Size;
}
};
/// A \p FreeList is a set of Nodes. We're using \p std::multiset here to make
/// the look up procedure more efficient.
using FreeListTy = std::multiset<std::reference_wrapper<NodeTy>, NodeCmpTy>;
/// A list of \p FreeListTy entries, each of which is a \p std::multiset of
/// Nodes whose size is less or equal to a specific bucket size.
std::vector<FreeListTy> FreeLists;
/// A list of mutex for each \p FreeListTy entry
std::vector<std::mutex> FreeListLocks;
/// A table to map from a target pointer to its node
std::unordered_map<void *, NodeTy> PtrToNodeTable;
/// The mutex for the table \p PtrToNodeTable
std::mutex MapTableLock;
/// A reference to its corresponding \p DeviceTy object
DeviceTy &Device;
/// Request memory from target device
void *allocateOnDevice(size_t Size, void *HstPtr) const;
/// Deallocate data on device
int deleteOnDevice(void *Ptr) const;
/// This function is called when it tries to allocate memory on device but the
/// device returns out of memory. It will first free all memory in the
/// FreeList and try to allocate again.
void *freeAndAllocate(size_t Size, void *HstPtr);
/// The goal is to allocate memory on the device. It first tries to allocate
/// directly on the device. If a \p nullptr is returned, it might be because
/// the device is OOM. In that case, it will free all unused memory and then
/// try again.
void *allocateOrFreeAndAllocateOnDevice(size_t Size, void *HstPtr);
public:
/// Constructor. If \p Threshold is non-zero, then the default threshold will
/// be overwritten by \p Threshold.
MemoryManagerTy(DeviceTy &Dev, size_t Threshold = 0);
/// Destructor
~MemoryManagerTy();
/// Allocate memory of size \p Size from target device. \p HstPtr is used to
/// assist the allocation.
void *allocate(size_t Size, void *HstPtr);
/// Deallocate memory pointed by \p TgtPtr
int free(void *TgtPtr);
};
#endif // LLVM_OPENMP_LIBOMPTARGET_SRC_MEMORYMANAGER_H

View File

@ -11,6 +11,7 @@
//===----------------------------------------------------------------------===//
#include "device.h"
#include "MemoryManager.h"
#include "private.h"
#include "rtl.h"
@ -21,6 +22,36 @@
/// Map between Device ID (i.e. openmp device id) and its DeviceTy.
DevicesTy Devices;
DeviceTy::DeviceTy(const DeviceTy &D)
: DeviceID(D.DeviceID), RTL(D.RTL), RTLDeviceID(D.RTLDeviceID),
IsInit(D.IsInit), InitFlag(), HasPendingGlobals(D.HasPendingGlobals),
HostDataToTargetMap(D.HostDataToTargetMap),
PendingCtorsDtors(D.PendingCtorsDtors), ShadowPtrMap(D.ShadowPtrMap),
DataMapMtx(), PendingGlobalsMtx(), ShadowMtx(),
LoopTripCnt(D.LoopTripCnt), MemoryManager(nullptr) {}
DeviceTy &DeviceTy::operator=(const DeviceTy &D) {
DeviceID = D.DeviceID;
RTL = D.RTL;
RTLDeviceID = D.RTLDeviceID;
IsInit = D.IsInit;
HasPendingGlobals = D.HasPendingGlobals;
HostDataToTargetMap = D.HostDataToTargetMap;
PendingCtorsDtors = D.PendingCtorsDtors;
ShadowPtrMap = D.ShadowPtrMap;
LoopTripCnt = D.LoopTripCnt;
return *this;
}
DeviceTy::DeviceTy(RTLInfoTy *RTL)
: DeviceID(-1), RTL(RTL), RTLDeviceID(-1), IsInit(false), InitFlag(),
HasPendingGlobals(false), HostDataToTargetMap(), PendingCtorsDtors(),
ShadowPtrMap(), DataMapMtx(), PendingGlobalsMtx(), ShadowMtx(),
MemoryManager(nullptr) {}
DeviceTy::~DeviceTy() = default;
int DeviceTy::associatePtr(void *HstPtrBegin, void *TgtPtrBegin, int64_t Size) {
DataMapMtx.lock();
@ -331,11 +362,22 @@ void DeviceTy::init() {
// Make call to init_requires if it exists for this plugin.
if (RTL->init_requires)
RTL->init_requires(RTLs->RequiresFlags);
int32_t rc = RTL->init_device(RTLDeviceID);
if (rc == OFFLOAD_SUCCESS) {
int32_t Ret = RTL->init_device(RTLDeviceID);
if (Ret != OFFLOAD_SUCCESS)
return;
// The memory manager will only be disabled when users provide a threshold via
// the environment variable \p LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD and set
// it to 0.
if (const char *Env = std::getenv("LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD")) {
size_t Threshold = std::stoul(Env);
if (Threshold)
MemoryManager = std::make_unique<MemoryManagerTy>(*this, Threshold);
} else
MemoryManager = std::make_unique<MemoryManagerTy>(*this);
IsInit = true;
}
}
/// Thread-safe method to initialize the device only once.
int32_t DeviceTy::initOnce() {
@ -362,10 +404,18 @@ __tgt_target_table *DeviceTy::load_binary(void *Img) {
}
void *DeviceTy::allocData(int64_t Size, void *HstPtr) {
// If memory manager is enabled, we will allocate data via memory manager.
if (MemoryManager)
return MemoryManager->allocate(Size, HstPtr);
return RTL->data_alloc(RTLDeviceID, Size, HstPtr);
}
int32_t DeviceTy::deleteData(void *TgtPtrBegin) {
// If memory manager is enabled, we will deallocate data via memory manager.
if (MemoryManager)
return MemoryManager->free(TgtPtrBegin);
return RTL->data_delete(RTLDeviceID, TgtPtrBegin);
}

View File

@ -17,6 +17,7 @@
#include <cstddef>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include <vector>
@ -26,6 +27,7 @@ struct RTLInfoTy;
struct __tgt_bin_desc;
struct __tgt_target_table;
struct __tgt_async_info;
class MemoryManagerTy;
/// Map between host data and target data.
struct HostDataToTargetTy {
@ -142,34 +144,18 @@ struct DeviceTy {
// moved into the target task in libomp.
std::map<int32_t, uint64_t> LoopTripCnt;
DeviceTy(RTLInfoTy *RTL)
: DeviceID(-1), RTL(RTL), RTLDeviceID(-1), IsInit(false), InitFlag(),
HasPendingGlobals(false), HostDataToTargetMap(), PendingCtorsDtors(),
ShadowPtrMap(), DataMapMtx(), PendingGlobalsMtx(), ShadowMtx() {}
/// Memory manager
std::unique_ptr<MemoryManagerTy> MemoryManager;
DeviceTy(RTLInfoTy *RTL);
// The existence of mutexes makes DeviceTy non-copyable. We need to
// provide a copy constructor and an assignment operator explicitly.
DeviceTy(const DeviceTy &d)
: DeviceID(d.DeviceID), RTL(d.RTL), RTLDeviceID(d.RTLDeviceID),
IsInit(d.IsInit), InitFlag(), HasPendingGlobals(d.HasPendingGlobals),
HostDataToTargetMap(d.HostDataToTargetMap),
PendingCtorsDtors(d.PendingCtorsDtors), ShadowPtrMap(d.ShadowPtrMap),
DataMapMtx(), PendingGlobalsMtx(), ShadowMtx(),
LoopTripCnt(d.LoopTripCnt) {}
DeviceTy(const DeviceTy &D);
DeviceTy& operator=(const DeviceTy &d) {
DeviceID = d.DeviceID;
RTL = d.RTL;
RTLDeviceID = d.RTLDeviceID;
IsInit = d.IsInit;
HasPendingGlobals = d.HasPendingGlobals;
HostDataToTargetMap = d.HostDataToTargetMap;
PendingCtorsDtors = d.PendingCtorsDtors;
ShadowPtrMap = d.ShadowPtrMap;
LoopTripCnt = d.LoopTripCnt;
DeviceTy &operator=(const DeviceTy &D);
return *this;
}
~DeviceTy();
// Return true if data can be copied to DstDevice directly
bool isDataExchangable(const DeviceTy& DstDevice);

View File

@ -0,0 +1,47 @@
// RUN: %libomptarget-compilexx-run-and-check-aarch64-unknown-linux-gnu
// RUN: %libomptarget-compilexx-run-and-check-powerpc64-ibm-linux-gnu
// RUN: %libomptarget-compilexx-run-and-check-powerpc64le-ibm-linux-gnu
// RUN: %libomptarget-compilexx-run-and-check-x86_64-pc-linux-gnu
// RUN: %libomptarget-compilexx-run-and-check-nvptx64-nvidia-cuda
#include <omp.h>
#include <cassert>
#include <iostream>
int main(int argc, char *argv[]) {
#pragma omp parallel for
for (int i = 0; i < 16; ++i) {
for (int n = 1; n < (1 << 13); n <<= 1) {
void *p = omp_target_alloc(n * sizeof(int), 0);
omp_target_free(p, 0);
}
}
#pragma omp parallel for
for (int i = 0; i < 16; ++i) {
for (int n = 1; n < (1 << 13); n <<= 1) {
int *p = (int *)omp_target_alloc(n * sizeof(int), 0);
#pragma omp target teams distribute parallel for is_device_ptr(p)
for (int j = 0; j < n; ++j) {
p[j] = i;
}
int buffer[n];
#pragma omp target teams distribute parallel for is_device_ptr(p) \
map(from \
: buffer)
for (int j = 0; j < n; ++j) {
buffer[j] = p[j];
}
for (int j = 0; j < n; ++j) {
assert(buffer[j] == i);
}
omp_target_free(p, 0);
}
}
std::cout << "PASS\n";
return 0;
}
// CHECK: PASS